首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26471篇
  免费   4826篇
  国内免费   3607篇
化学   14188篇
晶体学   347篇
力学   3465篇
综合类   335篇
数学   3733篇
物理学   12836篇
  2024年   52篇
  2023年   314篇
  2022年   828篇
  2021年   772篇
  2020年   987篇
  2019年   849篇
  2018年   818篇
  2017年   964篇
  2016年   1188篇
  2015年   1058篇
  2014年   1513篇
  2013年   2404篇
  2012年   1809篇
  2011年   1781篇
  2010年   1467篇
  2009年   1674篇
  2008年   1763篇
  2007年   1781篇
  2006年   1656篇
  2005年   1373篇
  2004年   1276篇
  2003年   1144篇
  2002年   959篇
  2001年   878篇
  2000年   816篇
  1999年   686篇
  1998年   637篇
  1997年   543篇
  1996年   439篇
  1995年   393篇
  1994年   347篇
  1993年   278篇
  1992年   257篇
  1991年   190篇
  1990年   155篇
  1989年   145篇
  1988年   111篇
  1987年   101篇
  1986年   95篇
  1985年   70篇
  1984年   54篇
  1983年   24篇
  1982年   56篇
  1981年   45篇
  1980年   34篇
  1979年   31篇
  1978年   26篇
  1977年   14篇
  1976年   9篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
91.
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.  相似文献   
92.
Juice made from sea-buckthorn berries (Hippophae rhamnoides L.) is a valuable source of bioactive compounds, vitamins, as well as micro- and macronutrients. By applying defatted sea-buckthorn juice, it is possible to enhance wheat beer and change its sensory properties and the contents of bioactive compounds in the finished product. A sensory assessment showed that wheat beers with a 5% v/v addition of sea-buckthorn juice were characterised by a balanced taste and aroma (overall impression). Physicochemical analyses showed that, compared to the control samples, wheat beers enhanced with defatted sea-buckthorn juice at a rate of 5% v/v or 10% v/v had high total acidity with respective mean values of 5.30 and 6.88 (0.1 M NaOH/100 mL), energy values lower on average by 4.04% and 8.35%, respective polyphenol contents of 274.1 mg GAE/L and 249.7 mg GAE/L, as well as higher antioxidant activity (measured using DPPH, FRAP, and ABTS assays). The findings show that the samples of wheat beer enhanced with sea-buckthorn juice had average ascorbic acid contents of 2.5 and 4.5 mg/100 mL (in samples with 5% v/v and 10% v/v additions, respectively) and contained flavone glycosides, e.g., kaempferol-3-O-glucuronide-7-O-hexoside. Based on the current findings, it can be concluded that wheat beer enhanced with sea-buckthorn juice could emerge as a new trend in the brewing industry.  相似文献   
93.
Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10–30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering.  相似文献   
94.
LBO晶体超光滑表面抛光机理   总被引:1,自引:0,他引:1  
胶体SiO2抛光LBO晶体获得无损伤的超光滑表面,结合前人对抛光机理的认识,探讨了超光滑表面抛光的材料去除机理,分析了化学机械抛光中的原子级材料去除机理.在此基础上,对胶体SiO2抛光LBO晶体表面材料去除机理和超光滑表面的形成进行了详细的描述,研究抛光液的pH值与材料去除率和表面粗糙度的关系.LBO晶体超光滑表面抛光的材料去除机理是抛光液与晶体表面的活泼原子层发生化学反应形成过渡的软质层,软质层在磨料和抛光盘的作用下很容易被无损伤的去除.酸性条件下,随抛光液pH值的减小抛光材料的去除率增大;抛光液pH值为4时,获得最好的表面粗糙度.  相似文献   
95.
本文简述了疏水性表面的基本原理,分别从低表面能物质修饰和表面微细粗糙结构的构建两个方面,对疏水性陶瓷材料的制备技术和最新的成果进行了总结,介绍了其潜在的应用并对未来的研究方向作了展望.  相似文献   
96.
6H-SiC衬底片的表面处理   总被引:1,自引:0,他引:1  
相比于蓝宝石,6H-SiC是制作GaN高功率器件更有前途的衬底.本文研究了表面处理如研磨、化学机械抛光对6H-SiC衬底表面特性的影响.用显微镜、原子力显微镜、拉曼光谱、卢瑟福背散射谱表征了衬底表面.结果表明经过两步化学机械抛光后提高了表面质量.经第二步化学机械抛光后的衬底具有优异的表面形貌、高透射率和极小的损伤层,其表面粗糙度RMS是0.12nm.在该衬底上用MOCVD方法长出了高质量的GaN外延膜.  相似文献   
97.
王焕英 《人工晶体学报》2007,36(6):1446-1449
本文综述了不同晶形纳米碳酸钙的制备方法、纳米碳酸钙表面改性技术的研究现状以及表面改性方法,分析了目前纳米碳酸钙制备及表面改性技术存在的问题,并对其发展前景作了展望.  相似文献   
98.
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey’s multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.  相似文献   
99.
In this paper, we present a fully Lagrangian method based on the radial basis function (RBF) finite difference (FD) method for solving convection–diffusion partial differential equations (PDEs) on evolving surfaces. Surface differential operators are discretized by the tangent plane approach using Gaussian RBFs augmented with two-dimensional (2D) polynomials. The main advantage of our method is the simplicity of calculating differentiation weights. Additionally, we couple the method with anisotropic RBFs (ARBFs) to obtain more accurate numerical solutions for the anisotropic growth of surfaces. In the ARBF interpolation, the Euclidean distance is replaced with a suitable metric that matches the anisotropic surface geometry. Therefore, it will lead to a good result on the aspects of stability and accuracy of the RBF-FD method for this type of problem. The performance of this method is shown for various convection–diffusion equations on evolving surfaces, which include the anisotropic growth of surfaces and growth coupled with the solutions of PDEs.  相似文献   
100.
Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号