首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14951篇
  免费   3144篇
  国内免费   2173篇
化学   9372篇
晶体学   359篇
力学   1820篇
综合类   147篇
数学   1434篇
物理学   7136篇
  2024年   26篇
  2023年   186篇
  2022年   425篇
  2021年   444篇
  2020年   630篇
  2019年   517篇
  2018年   532篇
  2017年   584篇
  2016年   780篇
  2015年   682篇
  2014年   938篇
  2013年   1617篇
  2012年   1055篇
  2011年   1019篇
  2010年   841篇
  2009年   926篇
  2008年   958篇
  2007年   1004篇
  2006年   897篇
  2005年   779篇
  2004年   719篇
  2003年   662篇
  2002年   504篇
  2001年   485篇
  2000年   480篇
  1999年   374篇
  1998年   373篇
  1997年   280篇
  1996年   255篇
  1995年   223篇
  1994年   214篇
  1993年   157篇
  1992年   135篇
  1991年   96篇
  1990年   66篇
  1989年   72篇
  1988年   64篇
  1987年   45篇
  1986年   45篇
  1985年   41篇
  1984年   31篇
  1983年   9篇
  1982年   28篇
  1981年   8篇
  1980年   14篇
  1979年   14篇
  1978年   8篇
  1973年   5篇
  1971年   3篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
921.
基于VOF方法的带相变的自由界面的计算   总被引:2,自引:0,他引:2  
对于气液自由界面上存在相变(蒸发、沸腾或凝结)的情况,由于此时不仅物性分布是不连续的,速度场也发生了不连续,这无论对于捕捉或追踪自由界面的算法本身还是流场的求解都带来了一定的困难.本文提出一种基于VOF方法的计算带相变的自由界面的算法,对这种情况下的关键问题一速度场的不连续性给出了解决方法.并用编制的二维程序计算了水平壁面上的膜态沸腾,并将计算结果与理论公式进行了比较.  相似文献   
922.
考虑药物与蛋白质受体的3类非键作用模式, 利用8类虚拟原子探针和Monte Carlo随机采样技术, 得到了一套新的氨基酸侧链表面静电、立体及疏水势能场(ASSPF)参数. 在此基础上对苦味二肽和血管舒缓激五肽进行了结构表征和QSAR研究, 所建模型复相关系数R2和留一法交互检验复相关系数QLOOCV2分别为0.8457, 0.851和0.7688, 0.7952, 同时分析了肽链不同位置上氨基酸侧链对活性的影响, 取得较好的结果.  相似文献   
923.
New functionalization methods of meta- and para-aramid fabrics with silver nanowires (AgNWs) and two silanes (3-aminopropyltriethoxysilane (APTES)) and diethoxydimethylsilane (DEDMS) were developed: a one-step method (mixture) with AgNWs dispersed in the silane mixture and a two-step method (layer-by-layer) in which the silanes mixture was applied to the previously deposited AgNWs layer. The fabrics were pre-treated in a low-pressure air radio frequency (RF) plasma and subsequently coated with polydopamine. The modified fabrics acquired hydrophobic properties (contact angle ΘW of 112–125°). The surface free energy for both modified fabrics was approximately 29 mJ/m2, while for reference, meta- and para-aramid fabrics have a free energy of 53 mJ/m2 and 40 mJ/m2, respectively. The electrical surface resistance (Rs) was on the order of 102 Ω and 104 Ω for the two-step and one-step method, respectively. The electrical volume resistance (Rv) for both modified fabrics was on the order of 102 Ω. After UV irradiation, the Rs did not change for the two-step method, and for the one-step method, it increased to the order of 1010 Ω. The specific strength values were higher by 71% and 63% for the meta-aramid fabric and by 102% and 110% for the para-aramid fabric for the two-step and one-step method, respectively, compared to the unmodified fabrics after UV radiation.  相似文献   
924.
Lithium-rich manganese-based layered cathode materials are considered to be one of the best options for next-generation lithium-ion batteries, owing to their ultra-high specific capacity (>250 mAh·g−1) and platform voltage. However, their poor cycling stability, caused by the release of lattice oxygen as well as the electrode/electrolyte side reactions accompanying complex phase transformation, makes it difficult to use this material in practical applications. In this work, we suggest a molybdenum surface modification strategy to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2. The Mo-modified Li1.2Mn0.54Ni0.13Co0.13O2 material exhibits an enhanced discharge specific capacity of up to 290.5 mAh·g−1 (20 mA·g−1) and a capacity retention rate of 82% (300 cycles at 200 mA·g−1), compared with 261.2 mAh·g−1 and a 70% retention rate for the material without Mo modification. The significantly enhanced performance of the modified material can be ascribed to the formation of a Mo-compound-involved nanolayer on the surface of the materials, which effectively lessens the electrolyte corrosion of the cathode, as well as the activation of Mo6+ towards Ni2+/Ni4+ redox couples and the pre-activation of a Mo compound. This study offers a facile and effective strategy to address the poor cyclability of lithium-rich manganese-based layered cathode materials.  相似文献   
925.
Mung bean seed coat (MBC) is a by-product of the mung bean processing industry. It contains a large number of phenolic compounds with therapeutic anti-inflammatory, anti-diabetic and antioxidant properties. This research aimed to investigate the optimum conditions for phenolic and flavonoid extraction from MBC by pressurized liquid extraction (PLE). Response surface methodology (RSM) was used to study the effects of temperature (80–160 °C), pressure (1200–1800 psi) and ethanol concentration (5–95%) on total phenolic content (TPC), total flavonoid content (TFC) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (ABTS). Scale-up extraction was also performed. The optimum conditions for extraction were 160 °C, 1300 psi and 50% ethanol. Under optimum conditions, the TPC was 55.27 ± 1.14 mg gallic acid equivalent (GAE)/g MBC, TFC was 34.04 ± 0.72 mg catechin equivalent (CE)/g MBC and ABTS scavenging activity was 195.05 ± 2.29 mg trolox equivalent (TE)/g MBC. The TFC and ABTS scavenging activity of the extracts obtained at the pilot scale (10 L) was not significantly different from the laboratory scale, while TPC was significantly increased. The freeze-dried MBC extract contained vitexin and isovitexin 130.53 ± 17.89, 21.21 ± 3.22 mg/g extract, respectively. In conclusion, PLE was able to extract phenolics, flavonoids with ABTS scavenging activity from MBC with the prospect for future scale-up for food industry.  相似文献   
926.
The title compound was synthesized and structurally characterized. Theoretical IR, NMR (with the GIAO technique), UV, and nonlinear optical properties (NLO) in four different solvents were calculated for the compound. The calculated HOMO–LUMO energies using time-dependent (TD) DFT revealed that charge transfer occurs within the molecule, and probable transitions in the four solvents were identified. The in silico absorption, distribution, metabolism, and excretion (ADME) analysis was performed in order to determine some physicochemical, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal properties of the molecule. Finally, molecular docking calculation was performed, and the results were evaluated in detail.  相似文献   
927.
Supercritical carbon dioxide extraction was used to extract carotenoids from dry paprika Capsicum annuum. Studies regarding the effect of process parameters, including pressure (25–45 MPa), temperature (40–60 °C), and time (10–110 min), were carried out using response surface methodology. It was found that under optimal conditions (pressure of 45 MPa, temperature of 50 °C, and time of 74 min), the extract yield was 10.05%, and the total content of carotenoids in the extract was 4.21%, in good agreement with the predicted values (10.24% and 4.24%, respectively). Composition analysis showed that paprika extract mainly consisted of linoleic acid. There was no significant difference between the fatty acid content of the extracts obtained by SC-CO2 extraction and n-hexane Soxhlet extraction. For functional purposes, the effect of storage conditions and time on the quality of paprika extract was also specified.  相似文献   
928.
The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.  相似文献   
929.
To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with β-diketone [tfa−1,1,1-trifluoro-2,4-pentanedionato (1); pfpa−5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba−5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and β-iminoketone [i-tfa−1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa−5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70–80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd β-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd β-iminoketonates. The molecules 2–6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1–2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4–6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd β-iminoketonates and Pd β-diketonates were minimized with the elongation of the fluorine chain in the ligands.  相似文献   
930.
Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs’ surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M−1.cm−1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号