首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72640篇
  免费   7529篇
  国内免费   10642篇
化学   59632篇
晶体学   2244篇
力学   4090篇
综合类   563篇
数学   5813篇
物理学   18469篇
  2024年   115篇
  2023年   675篇
  2022年   1409篇
  2021年   1683篇
  2020年   2203篇
  2019年   2072篇
  2018年   1826篇
  2017年   2289篇
  2016年   2865篇
  2015年   2656篇
  2014年   3369篇
  2013年   5128篇
  2012年   5129篇
  2011年   4407篇
  2010年   3689篇
  2009年   4585篇
  2008年   4581篇
  2007年   4700篇
  2006年   4332篇
  2005年   3971篇
  2004年   3946篇
  2003年   3238篇
  2002年   3672篇
  2001年   2274篇
  2000年   2154篇
  1999年   1734篇
  1998年   1515篇
  1997年   1282篇
  1996年   1313篇
  1995年   1203篇
  1994年   1127篇
  1993年   827篇
  1992年   854篇
  1991年   521篇
  1990年   423篇
  1989年   355篇
  1988年   357篇
  1987年   260篇
  1986年   215篇
  1985年   212篇
  1984年   188篇
  1983年   116篇
  1982年   153篇
  1981年   176篇
  1980年   185篇
  1979年   184篇
  1978年   151篇
  1977年   120篇
  1976年   107篇
  1973年   77篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Features of the solvation of zinctetraphenylporphyrin (ZnTPP) in benzene, toluene,ortho-, meta-, andpara-xylenes were studied by a thermogravimetric method. The temperature ranges of the stability and the compositions of the corresponding specific - complexes were determined from the results of the thermogravimetric investigation of the crystallosolvates of the metalloporphyrin with the solvent molecules, and the energy characteristics of the intermolecular metalloporphyrin—solvent interactions were calculated.Institute of the Chemistry of Nonaqueous Solutions, Russian Academy of Sciences, 153018 Ivanovo. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1545–1548, July, 1992.  相似文献   
992.
Reaction of cis-,-dinitrostilbene (substrate) with morpholine (reagent) in n-hexane leads to cis--nitro--morpholinostilbene (end product). The process is of first order with respect to the substrate and second order with respect to the reagent. Possible reaction mechanisms are analyzed, and it is established that the following are most probable on the basis of kinetic patterns and stereochemistry: development of a charge transfer complex having a hydrogen bond between the substrate nitro group and reagent amino group; reaction of the complex with a second reagent molecule and formation of a carbanion (this stage determines the overall reaction rate); and detachment of a nitrite ion from the nitrocarbanion and its protonation to form the end product.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. A. N. Nesmeyanov Institute of Heteroorganic Compound, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 78–83, January, 1992.  相似文献   
993.
The threat and global concern of energy crises have significantly increased over the last two decades. Because solar light and water are abundant on earth, photocatalytic hydrogen evolution through water splitting has been considered as a promising route to produce green energy. Therefore, semiconductor photocatalysts play a key role in transforming sunlight and water to hydrogen energy. To date, various photocatalysts have been studied. Among them, TiO2 has been extensively investigated because of its non-toxicity, high chemical stability, controllable morphology, and high photocatalytic activity. In particular, 1D TiO2 nanofibers (NFs) have attracted increasing attention as effective photocatalysts because of their unique 1D electron transfer pathway, high adsorption capacity, and high photoinduced electron–hole pair transfer capability. However, TiO2 NFs are considered as an inefficient photocatalyst for the hydrogen evolution reaction (HER) because of their disadvantages such as a large band gap (~3.2 eV) and fast recombination of photoinduced electron–hole pairs. Therefore, the development of a high-performance TiO2 NF photocatalyst is required for efficient solar light conversion. In recent years, several strategies have been explored to improve the photocatalytic activity of TiO2 NFs, including coupling with narrow-bandgap semiconductors (such as ZnIn2S4). Recently, microwave (MW)-assisted synthesis has been considered as an important strategy for the preparation of photocatalyst semiconductors because of its low cost, environment-friendliness, simplicity, and high reaction rate. Herein, to overcome the above-mentioned limiting properties of TiO2 NFs, we report a 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction synthesized through a microwave (MW)-assisted process. Herein, the 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction was constructed rapidly by using in situ 2D ZnIn2S4nanosheets decorated on 1D TiO2 NFs. The loading of ZnIn2S4 nanoplates on the TiO2 NFs could be easily controlled by adjusting the molar ratios of ZnIn2S4 precursors to TiO2 NFs. The photocatalytic activity of the as-prepared samples for water splitting under simulated solar light irradiation was assessed. The experimental results showed that the photocatalytic performance of the ZnIn2S4/TiO2 composites was significantly improved, and the obtained ZnIn2S4/TiO2 composites showed increased optical absorption. Under optimal conditions, the highest HER rate of the ZT-0.5 (molar ratio of ZnIn2S4/TiO2= 0.5) sample was 8774 μmol·g-1·h-1, which is considerably higher than those of pure TiO2 NFs (3312 μmol·g-1·h-1) and ZnIn2S4nanoplates (3114 μmol·g-1·h-1) by factors of 2.7 and 2.8, respectively. Based on the experimental data and Mott-Schottky analysis, a possible mechanism for the formation of the S-scheme heterojunction between ZnIn2S4 and TiO2 was proposed to interpret the enhanced HER activity of the ZnIn2S4/TiO2heterojunctionphotocatalysts.   相似文献   
994.
In a mass spectrometric study, it was found that the saturated vapor over gadolinium tris-hexafluoroacetylacetonate Gd(C5O2HF6)3 contains molecular forms with a mass exceeding the mass of the dimer. The vapor overheated to 250–300°C contains only the monomer form. Simultaneous electron diffraction and mass spectrometric experiment aimed at investigating the structure of the Gd(hfa)3 monomer molecule was carried out at 284(5)°C. The Gd(hfa)3 molecule was found to have the symmetry of the equilibrium D 3 configuration. The basic structural parameters are r h1(Gd-O) = 2.291(10) Å, r h1(O-C) = 1.257(10) Å, r h1(C-Cr) = 1.404(6) Å, r h1(CF-F)av = 1.341(3) Å, ∠OGdO = 72.8(0.4)°. The GdO6 coordination polyhedron has the structure of a distorted antiprism. The rotation angle of the O-O-O trigonal faces relative to their position in a regular prism is 18.7(0.9)°. Quantum chemical calculations (HF/SBK, 6-31G*) generally reproduce the experimental structure, but the Gd-O internuclear distance is exaggerated by 0.04 Å.  相似文献   
995.
蔡正洪  唐瑜  谭民裕  郁开北 《化学学报》2005,63(15):1465-1468
通过硝酸镧和双-单齿芳香酰胺型配体L {L=1,4-双[(2'-苄胺甲酰基苯氧基)-甲基]苯}之间的反应得到了配位聚合物{[La(NO3)3]2•L3}n, 并用X射线单晶衍射测定了配合物的晶体结构. 配合物为三斜晶系, P1空间群, 晶胞参数a=1.1298(2) nm, b=1.2689(1) nm, c=2.1030(3) nm, α=81.189(9)°, β=80.95(1)°, γ=65.832(9)°, V=2.7032(6) nm3, Z=2, R=0.0267, wR=0.0679, La3+为9配位, 呈变形的三帽三角棱柱配位构型. 配合物通过配体的桥联作用形成一维环链相间的配位聚合结构, 由于相邻链间不存在氢键和π-π堆积作用, 所以配合物是以单链形式堆积排列.  相似文献   
996.
Two inorganic-organic hybrid solids, Zn2(phen)(HPO3)2 (1) and Zn(phen)(HPO3) (2), have been synthesized under solvothermal conditions in the presence of 1,10-phenanthroline (phen) ligands. Their structures were determined by single-crystal X-ray diffraction and further characterized by FTIR, elemental analysis, powder X-ray diffraction, thermogravimetric analysis and fluorescent spectra. Compound 1 crystallizes in the triclnic system, space group P-1, , , , α=75.609(1)°, β=79.145(2)°, γ=67.157(2)°, , Z=2. Compound 2 is monoclinic, C2/c, , , , β=94.175(4)°, , Z=8. Both structures consist of 1D chains constructed from strictly alternating ZnO4 and HPO3 polyhedra through sharing vertices. The chains are further decorated by Zn-centered complex architectures, [Zn(phen)]2+ for 1 and [Zn(phen)2]2+ for 2. The 2D and 3D supramolecular arrays for 1 and 2 are stably stacked via strong π-π interactions of the phen groups, respectively.  相似文献   
997.
The major octabromo isomer of technical octabromo diphenyl ether mixture (technical octaBDE) DE-79 was isolated by RP-HPLC. Three serially coupled columns (each 250 mm long) enabled a good separation of the target compound from other congeners using 100% ACN as eluent. Approximately 100 microg of the target compound was isolated with a purity of >90% and investigated by MS for confirmation of the degree of bromination. 1H-NMR and 2-D 1H-13C correlation NMR spectra unequivocally clarified that the octaBDE in question is 2,2',3,3',4,4',6,6'-octabromodiphenyl ether (BDE 197). Based on annual production rates of technical BDE products (1999/2001), approximately 380 tons of BDE 197 were annually produced which, on the long term, may enter the environment. Compared with other individual BDE congeners, BDE 197 has the seventh highest application rate. Reductive debromination of BDE 197 can lead to four hepta-, 15 hexa-, 23 penta-, and 28 tetra-BDE isomers, respectively. This variety includes all known major BDEs of environmental concern (BDE 47, 85, 99, 100, 153, 154, and 183). The identification of BDE 197 in technical octaBDE DE-79 strongly suggests that research on the environmental fate of BDEs should include this key-BDE congener.  相似文献   
998.
1 INTRODUCTION Recently the series of compounds M3Ln(BO3)3 (M = Sr, Ba and Ln = LaLu, Sc, Y) with space group P63cm or -3R have been reported[1~5], and some of them exhibit interesting optical properties when doped with the active Cr3+ or Yb3+ ions as laser materials. For example, Yb3+-doped Sr3Y- (BO3)3 crystal is a promising laser material for both tunable and femtosecond laser applications[6~8]. The Ba3Y(BO3)3 crystal melts congruently at 1256 ℃ and has a phase transitio…  相似文献   
999.
Atomic structure of InAs quantum dots on GaAs   总被引:1,自引:0,他引:1  
In recent years, the self-assembled growth of semiconductor nanostructures, that show quantum size effects, has been of considerable interest. Laser devices operating with self-assembled InAs quantum dots (QDs) embedded in GaAs have been demonstrated. Here, we report on the InAs/GaAs system and raise the question of how the shape of the QDs changes with the orientation of the GaAs substrate. The growth of the InAs QDs is understood in terms of the Stranski–Krastanow growth mode. For modeling the growth process, the shape and atomic structure of the QDs have to be known. This is a difficult task for such embedded entities.

In our approach, InAs is grown by molecular beam epitaxy on GaAs until self-assembled QDs are formed. At this point the growth is interrupted and atomically resolved scanning tunneling microscopy (STM) images are acquired. We used preparation parameters known from the numerous publications on InAs/GaAs. In order to learn more about the self-assemblage process we studied QD formation on different GaAs(0 0 1), (1 1 3)A, and ( )B substrates. From the atomically resolved STM images we could determine the shape of the QDs. The quantum “dots” are generally rather flat entities better characterized as “lenses”. In order to achieve this flatness, the QDs are terminated by high-index bounding facets on low-index substrates and vice versa. Our results will be summarized in comparison with the existing literature.  相似文献   

1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号