首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   101篇
  国内免费   92篇
化学   626篇
力学   30篇
综合类   11篇
数学   207篇
物理学   382篇
  2024年   2篇
  2023年   7篇
  2022年   12篇
  2021年   20篇
  2020年   19篇
  2019年   22篇
  2018年   28篇
  2017年   35篇
  2016年   49篇
  2015年   40篇
  2014年   51篇
  2013年   82篇
  2012年   70篇
  2011年   69篇
  2010年   72篇
  2009年   81篇
  2008年   86篇
  2007年   67篇
  2006年   77篇
  2005年   68篇
  2004年   63篇
  2003年   52篇
  2002年   42篇
  2001年   39篇
  2000年   26篇
  1999年   19篇
  1998年   10篇
  1997年   12篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1985年   3篇
  1975年   1篇
  1969年   1篇
排序方式: 共有1256条查询结果,搜索用时 15 毫秒
21.
We investigate the statistical and dimensional properties of uniform star polymers attached by the branching vertex of degreef in a wedge geometry in three dimensions and described by the wedge angles and. We show that the growth constant is equal to f , where is the self-avoiding walk limit. Thef and (, ) dependences of the corresponding critical exponent f (, ) are studied using Monte Carlo techniques. In the casef=1, our results are compared with existing predictions obtained from series expansion and renormalization group methods. We have also estimated the amplitudes for the mean square radius of gyration and the mean square end-to-end branch length. Our results for the ratio of the mean square radius of gyration of anf-star to that of a linear polymer of the same degree of polymerization attached in a similar wedge, and the analogous ratio for the mean square end-to-end branch length, are consistent with these ratios being lattice-independent quantities.  相似文献   
22.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   
23.
A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized, and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, ^1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared polymer electrolyte has reached 8.83 × 10 ^-4 S·cm^-1 at room temperature. Thermogravimetry (TG) of the polymer electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.  相似文献   
24.
本文将自制Y式玻碳电极拉上两性接枝星形聚合物(GPSMA)的LB膜,用循环伏安法研究谈膜的屏蔽效应,讨论了接枝量、成膜条件等对膜缺陷的影响,并提出了减少缺陷的办法。  相似文献   
25.
Heuer DM  Saha S  Kusumo AT  Archer LA 《Electrophoresis》2004,25(12):1772-1783
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA.  相似文献   
26.
The copper‐catalyzed atom transfer radical polymerization (ATRP) of poly(propylene glycol) methacrylate (PPGM) in solution to produce linear and starlike polymers is reported, using methylethyl ketone as the solvent and a temperature of 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer without protecting hydroxyl end groups of monomer. The polymerizations were consistent with “living” or controlled processes, as revealed by the linear evolution of molecular weight with conversion. Increasing the [M]0:[I]0 ratio resulted in increasing molecular weights, whereas the polydispersity indices remained low (Mw/Mn < 1.4) even at high conversion. Decreasing the [CuBr]0:[I]0 ratio resulted in lower conversions, slightly larger polydispersities, and decreased molecular weights, likely resulting from a lower initiation efficiency. Polymers were characterized by 1H and 13C NMR; molecular weights of polymers with low degrees of polymerization were estimated by end‐group analysis from 13C NMR spectra obtained using distortionless enhancement by polarization transfer and the gated decoupling techniques. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 334–343, 2002  相似文献   
27.
Polyethylene (PE)‐based 3‐ and 4‐miktoarm star [PE(PCL)2, PE(PCL)3] and H‐type [(PCL)2PE(PCL)2] block copolymers [polycaprolactone (PCL)] were synthesized by a combination of polyhomologation, chlorosilane chemistry, and ring opening polymerization (ROP). The following steps were used for the synthesis of the miktoarm stars: (a) reaction of a hydroxy‐terminated polyethylene (PE‐OH), prepared by polyhomologation of dimethylsulfoxonium methylide with a monofunctional boron initiator followed by oxidation/hydrolysis, with chloromethyl(methyl)dimethoxysilane or chloromethyltrimethoxysilane; (b) hydrolysis of the produced ω‐di(tri)methoxysilyl‐polyethylenes to afford ω‐dihydroxy‐polyethylene (difunctional initiator) and ω‐trihydroxy‐polyethylene (trifunctional initiator); and (c) ROP of ɛ‐caprolactone with the difunctional (3‐miktoarm star) or trifunctional macroinitiator (4‐miktoarm star), in the presence of 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2λ5,4λ5‐catenadi(phosphazene) (t‐BuP2). The H‐type block copolymers were synthesized using the same strategy, but with a difunctional polyhomologation initiator. All intermediates and final products were characterized by HT‐GPC, 1H NMR and FTIR analyses. Thermal properties of the PE precursors and all final products were investigated by DSC and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2129–2136  相似文献   
28.
This work presents a two‐step, one‐pot process to make star polymers with polywedge arms. In a one‐pot reaction, after the polywedge arms are synthesized, crosslinker species are added to the reaction, rapidly forming star polymers. Crosslinker species with different degrees of conformational freedom were designed and synthesized and their capacity to generate star polymers was evaluated. Mass conversions up to 92% and stars with up to 17 arms were synthesized with the most rigid crosslinker. The effects of arm molecular weight and molar ratio of crosslinker to arm on mass conversion and arms per star were explored further. Finally, the size‐molecular weight scaling relationship for polywedges with linear and star architectures was compared, corroborating theoretical results regarding star polymers with arms much larger than their core. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 732–740  相似文献   
29.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
30.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号