首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8035篇
  免费   1068篇
  国内免费   450篇
化学   4119篇
晶体学   30篇
力学   815篇
综合类   188篇
数学   1942篇
物理学   2459篇
  2024年   12篇
  2023年   111篇
  2022年   342篇
  2021年   320篇
  2020年   396篇
  2019年   268篇
  2018年   246篇
  2017年   347篇
  2016年   407篇
  2015年   362篇
  2014年   473篇
  2013年   482篇
  2012年   491篇
  2011年   462篇
  2010年   385篇
  2009年   474篇
  2008年   436篇
  2007年   452篇
  2006年   432篇
  2005年   366篇
  2004年   332篇
  2003年   282篇
  2002年   232篇
  2001年   188篇
  2000年   190篇
  1999年   151篇
  1998年   158篇
  1997年   112篇
  1996年   96篇
  1995年   104篇
  1994年   82篇
  1993年   70篇
  1992年   60篇
  1991年   34篇
  1990年   30篇
  1989年   25篇
  1988年   14篇
  1987年   16篇
  1986年   16篇
  1985年   26篇
  1984年   16篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   14篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1971年   2篇
排序方式: 共有9553条查询结果,搜索用时 14 毫秒
141.
In this study, the effect of photo-Fenton process on the treatment of petrochemical waste water treatment was investigated. The influence of process conditions were determined by factorial design. Optimization of the process conditions were performed by central composite design. Under, optimized conditions lab scale and solar assisted pilot scale of petrochemical waste water treatment was performed. Three factors namely initial pH, H2O2 concentration (mM) and Fe2+ concentration (mM) executed the essential role in petrochemical waste water treatment. Central composite design resulted in the prediction of optimized value as 6.5 initial pH, 15.65 mM of H2O2 concentration and 2.09 mM of Fe2+ concentration. Under these conditions, the reduction in chemical oxygen demand (COD) percentage reached about 68.67 ± 2.8% after 280 min in pilot scale of solar assisted photo Fenton process of petrochemical waste water treatment. Thus, experimental design combined with advanced Fenton process can become a feasible unconventional method for petrochemical waste water treatment.  相似文献   
142.
It is clear that the field of organocatalysis is continuously expanding during the last decades. With increasing computational capacity and new techniques, computational methods have provided a more economic approach to explore different chemical systems. This review offers a broad yet concise overview of current state-of-the-art studies that have employed novel strategies for catalyst design. The evolution of the all different theoretical approaches most commonly used within organocatalysis is discussed, from the traditional approach, manual-driven, to the most recent one, machine-driven.  相似文献   
143.
While the N-trifluoromethylation of cyclic ureas is of interest for the potential to fundamentally change the properties of these biologically relevant moieties, the single synthetic procedure known to date describing their access only gives 4,4-disubstituted or fused aromatic cyclic N-CF3 urea derivatives. We herein report an alternative approach to unleash access to the 4-monosubstituted imidazolidinone motif. The strategy relies on straightforward cyclization of readily accessible acyclic ureas, enabled by Ag-catalysis or light-assisted proton coupled electron transfer. The cyclic core is shown to be highly robust and amenable to various derivatizations, such as tandem Ni-catalysis, C−B, C−N, C−C cross couplings or C−H functionalizations, tolerating basic, nucleophilic and/or oxidizing conditions.  相似文献   
144.
杨香涛  石明亮 《化学教育》2022,43(21):56-60
在“宏观辨识与微观探析”视域下进行中和反应教学,首先以常规实验为载体,从宏观视角认识中和反应的外在表现,然后以模型、动画为载体,从微观视角了解中和反应的微观过程,再以数字化实验为载体,从宏观与微观相结合的视角理解中和反应的内在本质,最后联系生产生活实际,体验中和反应的应用价值。这样设计,学生能深刻理解中和反应的本质,增进化学学科理解,培养化学学科核心素养。  相似文献   
145.
Polymer electrolytes have attracted great interest for next-generation lithium-based batteries on account of safety and high energy density. In this review, we assess recent progress on the design of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in high voltage lithium batteries and identify possible side reactions between PEO-based electrolytes and existing cathodes. We provide an overview of the ways to enhance high voltage resistance of PEO-based electrolytes. Those include components blend, molecular design and interface modification. With these efforts, we want to present new insights into rational design of PEO-based electrolytes to develop solid-state lithium batteries for advanced performance.  相似文献   
146.
A novel solvent terminated microextraction method based on a natural deep eutectic solvent (L-menthol and lactic acid at a molar ratio of 1:2) coupled with high-performance liquid chromatography was proposed, which was utilized for the separation and enrichment of bisdemethoxycurcumin, demethoxycurcumin and curcumin in Curcumae Longae Rhizoma and turmeric tea. The effects of independent parameters on extraction efficiency were optimized by single-factor analysis. Subsequently, four predominated parameters affecting the extraction procedure, including extractant volume, salt concentration, demulsifier consumption, and demulsification time, were further evaluated by a central composite design. Under the optimized conditions, the linear ranges of calibration curves were 0.005–0.5 μg/mL for bisdemethoxycurcumin, 0.004–0.4 μg/mL for demethoxycurcumin, and 0.0045–0.45 μg/mL for curcumin, respectively. In addition, the developed method provided low detection limits (0.1–0.4 ng/mL) and high enrichment factors (279–350). Its intra-day and inter-day precision were carried out by relative standard deviation ranging from 2.2 to 9.2%. Finally, the applicability of this method was assessed by the analysis of Curcumae Longae Rhizoma and turmeric tea samples. The results showed that these samples were detected successfully and the spiked recoveries over the range of 85.3-108.9% with relative standard deviations of 1.6-8.9% were attained, indicating its high relative recoveries with good precision in real sample analysis.  相似文献   
147.
Removal of a troublesome textile dye, Direct Blue 71 (DB71) from water by a food waste compost was assessed in the current study. Since compost dye sorption is a multi-factor process influenced by mass, pH, concentration, temperature, contact time, and salinity, the cumulative influence of all parameters on DB71 removal was examined following an optimal multilevel multifactor experimental design. The process had to be presented using both linear and interaction terms, according to the variables analysis: Dye sorption = –0.050Mass + 0.122Conc–0.114pH + 0.132Time – 0.074Temp + 0.056Sal + 0.103Mass × Conc + 0.226 Mass × pH – 0.257Mass × Time – 0.112Mass × Temp – 0.041Mass × Sal + 0.008Conc × pH + 0.100Conc × Time + 0.089Conc × Temp + 0.167Conc × Sal – 0.245pH × Time – 0.231pH × Temp – 0.123pH × Sal + 0.358Tim × Temp + 0.355Tim × Sal – 0.045Temp × Sal (R2 = 0.9241)Salinity and pH were positively correlated with concentration, and contact time with temperature and salinity, to get better dye uptake. The optimal conditions for dye removal were the following: solid:liquid ratio 1:375, pH 3.0, initial dye concentration 400 mg L?1, contact time 240 min, salinity 0.6 M NaCl, temperature 50 °C. At the optimum combination of factors, equilibrium sorption isotherm and sorption kinetics were studied. Kinetic analysis indicated high sorption rate 4.0 mg g?1 min?1 while 28% of maximum capacity was reached within the first 10 min of interaction. Sorption isotherm has L2-shape which reflected surface saturation at high solute concentration with low competition with solvent molecules, with a maximum sorption capacity of 95.4 mg g?1. In column experiments performed at bed depth 5.1–12.8 cm, flow rate 1.0–2.0 mL min?1 and influent concentration 10–20 mg L?1, sorption capacity was 19.6 mg g?1, which represents 21% of the maximum capacity at equilibrium conditions. IR analysis of dye-loaded-compost confirmed the contribution of hydrophobic-hydrophobic forces in the sorption process.  相似文献   
148.
Hydrothermal synthesis using graphene oxide (GO) as a precursor has been used to produce luminescent graphene quantum dots (GQDs). However, such a method usually requires many reagents and multistep pretreatments, while can give rise to GQDs with low quantum yield (QY). Here, we investigated the concentration, the temperature of synthesis, and the pH of the GO solution used in the hydrothermal method through factorial design experiments aiming to optimize the QY of GQDs to reach a better control of their luminescent properties. The best synthesis condition (2 mg/mL, 175 °C, and pH = 8.0) yielded GQDs with a relatively high QY (8.9%) without the need of using laborious steps or dopants. GQDs synthesized under different conditions were characterized to understand the role of each synthesis parameter in the materials' structure and luminescence properties. It was found that the control of the synthesis parameters enables the tailoring of the amount of specific oxygen functionalities onto the surface of the GQDs. By changing the synthesis' conditions, it was possible to prioritize the production of GQDs with more hydroxyl or carboxyl groups, which influence their luminescent properties. The as-developed GQDs with tailored composition were used as luminescent probes to detect Fe3+. The lowest limit of detection (0.136 μM) was achieved using GQDs with higher amounts of carboxylic groups, while wider linear range was obtained by GQDs with superior QY. Thus, our findings contribute to rationally produce GQDs with tailored properties for varied applications by simply adjusting the synthesis conditions and suggest a pathway to understand the mechanism of detection of GQDs-based optical sensors.  相似文献   
149.
Volatile methylsiloxanes (VMSs) constitute a group of compounds used in a great variety of products, particularly personal care products. Due to their massive use, they are continually discharged into wastewater treatment plants and are increasingly being detected in wastewater and in the environment at low concentrations. The aim of this work was to develop and validate a fast and reliable methodology to screen seven VMSs in water samples, by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The influence of several factors affecting the extraction efficiency was investigated using a design of experiments approach. The main factors were selected (fiber type, sample volume, ionic strength, extraction and desorption time, extraction and desorption temperature) and optimized, employing a central composite design. The optimal conditions were: 65 µm PDMS/Divinylbenzene fiber, 10 mL sample, 19.5% NaCl, 39 min extraction time, 10 min desorption time, and 33 °C and 240 °C as extraction and desorption temperature, respectively. The methodology was successfully validated, showing low detection limits (up to 24 ng/L), good precision (relative standard deviations below 15%), and accuracy ranging from 62% to 104% in wastewater, tap, and river water samples.  相似文献   
150.
The coordination ability of the [(ppy)Au(IPr)]2+ fragment [ppy = 2-phenylpyridine, IPr = 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene] towards different anionic and neutral X ligands (X = Cl, BF4, OTf, H2O, 2-butyne, 3-hexyne) commonly involved in the crucial pre-equilibrium step of the alkyne hydration reaction is computationally investigated to shed light on unexpected experimental observations on its catalytic activity. Experiment reveals that BF4 and OTf have very similar coordination ability towards [(ppy)Au(IPr)]2+ and slightly less than water, whereas the alkyne complex could not be observed in solution at least at the NMR sensitivity. Due to the steric hindrance/dispersion interaction balance between X and IPr, the [(ppy)Au(IPr)]2+ fragment is computationally found to be much less selective than a model [(ppy)Au(NHC)]2+ (NHC = 1,3-dimethylimidazol-2-ylidene) fragment towards the different ligands, in particular OTf and BF4, in agreement with experiment. Effect of the ancillary ligand substitution demonstrates that the coordination ability of Au(III) is quantitatively strongly affected by the nature of the ligands (even more than the net charge of the complex) and that all the investigated gold fragments coordinate to alkynes more strongly than H2O. Remarkably, a stabilization of the water-coordinating species with respect to the alkyne-coordinating one can only be achieved within a microsolvation model, which reconciles theory with experiment. All the results reported here suggest that both the Au(III) fragment coordination ability and its proper computational modelling in the experimental conditions are fundamental issues for the design of efficient catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号