首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22613篇
  免费   2766篇
  国内免费   4950篇
化学   21911篇
晶体学   458篇
力学   1456篇
综合类   188篇
数学   379篇
物理学   5937篇
  2024年   62篇
  2023年   319篇
  2022年   933篇
  2021年   1004篇
  2020年   1209篇
  2019年   926篇
  2018年   828篇
  2017年   1113篇
  2016年   1252篇
  2015年   1233篇
  2014年   1395篇
  2013年   2076篇
  2012年   1486篇
  2011年   1660篇
  2010年   1146篇
  2009年   1448篇
  2008年   1340篇
  2007年   1482篇
  2006年   1290篇
  2005年   1168篇
  2004年   1022篇
  2003年   972篇
  2002年   744篇
  2001年   556篇
  2000年   563篇
  1999年   480篇
  1998年   386篇
  1997年   383篇
  1996年   306篇
  1995年   259篇
  1994年   240篇
  1993年   225篇
  1992年   204篇
  1991年   129篇
  1990年   89篇
  1989年   79篇
  1988年   85篇
  1987年   42篇
  1986年   36篇
  1985年   42篇
  1984年   24篇
  1983年   12篇
  1982年   17篇
  1981年   13篇
  1980年   13篇
  1979年   9篇
  1977年   3篇
  1976年   4篇
  1973年   4篇
  1971年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
EPR spectroscopy of labeled poly(ethylene oxide) (PEO) grafted on silica has been used to characterize the conformation and local dynamics of the chains. Grafted molecules of MW 2000 with grafting ratios of 0.045, 0.057, 0.126, and 0.42 molecules/nm2 were in contact with benzene. The mobility of the label was compared with that observed for solution of PEO from very diluted to highly concentrated and even bulk PEO. Thus, the concentration inside the grafted layer could be evaluated and also the thickness, which evolves rather linearly with the grafting ratio. © 1995 John Wiley & Sons, Inc.  相似文献   
22.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
23.
Methacrylate‐functionalized poly(ethylene oxide‐co‐ethylene carbonate) macromonomers were prepared in two steps by the anionic ring‐opening polymerization of ethylene carbonate at 180 °C, with potassium methoxide as the initiator, followed by the reaction of the terminal hydroxyl groups of the polymers with methacryloyl chloride. The molecular weight of the polymer went through a maximum after approximately 45 min of polymerization, and the content of ethylene carbonate units in the polymer decreased with the reaction time. A polymer having a number‐average molecular weight of 2650 g mol?1 and an ethylene carbonate content of 28 mol % was selected and used to prepare a macromonomer, which was subsequently polymerized by UV irradiation in the presence of different concentrations of lithium bis(trifluoromethanesulfonyl)imide salt. The resulting self‐supportive crosslinked polymer electrolyte membranes reached ionic conductivities of 6.3 × 10?6 S cm?1 at 20 °C. The coordination of the lithium ions by both the ether and carbonate oxygens in the polymer structure was indicated by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2195–2205, 2006  相似文献   
24.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   
25.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   
26.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
27.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   
28.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
29.
The direct methanol fuel cell (DMFC) has the potential to replace lithium‐ion rechargeable batteries in portable electronic devices, but currently experiences significant power density and efficiency losses due to high methanol crossover through polymer electrolyte membranes (PEMs). Numerous publications document the synthesis and characterization of new PEMs for the DMFC. This article reviews this research, transport phenomena in PEMs, and experimental techniques used to evaluate new PEMs for the DMFC. Although many PEMs do not show significant improvements over Nafion®, the benchmark PEM in DMFCs, experimental results show that several new PEMs exhibit lower methanol crossover at similar proton conductivities and/or higher DMFC power densities. These results and recommendations for future research are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Parts B: Polym Phys 44: 2201–2225, 2006  相似文献   
30.
The life of proton exchange membrane fuel cells (PEMFC) is currently limited by the mechanical endurance of polymer electrolyte membranes and membrane electrode assemblies (MEAs). In this paper, the authors report recent experimental and modeling work toward understanding the mechanisms of delayed mechanical failures of polymer electrolyte membranes and MEAs under relevant PEMFC operating conditions. Mechanical breach of membranes/MEAs in the form of pinholes and tears has been frequently observed after long‐term or accelerated testing of PEMFC cells/stacks. Catastrophic failure of cell/stack due to rapid gas crossover shortly follows the mechanical breach. Ex situ mechanical characterizations were performed on MEAs after being subjected to the accelerated chemical aging and relative humidity (RH) cycling tests. The results showed significant reduction of MEA ductility manifested as drastically reduced strain‐to‐failure of the chemically aged and RH‐cycled MEAs. Postmortem analysis revealed the formation and growth of mechanical defects such as cracks and crazing in the membranes and MEAs. A finite element model was used to estimate stress/strain states of an edge‐constrained MEA under rapid RH variations. Damage metrics for accelerated testing and life prediction of PEMFCs are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2346–2357, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号