首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5625篇
  免费   1648篇
  国内免费   1152篇
化学   4128篇
晶体学   146篇
力学   407篇
综合类   75篇
数学   1077篇
物理学   2592篇
  2024年   49篇
  2023年   139篇
  2022年   380篇
  2021年   426篇
  2020年   558篇
  2019年   395篇
  2018年   354篇
  2017年   390篇
  2016年   471篇
  2015年   441篇
  2014年   486篇
  2013年   643篇
  2012年   454篇
  2011年   454篇
  2010年   321篇
  2009年   315篇
  2008年   287篇
  2007年   267篇
  2006年   243篇
  2005年   178篇
  2004年   194篇
  2003年   152篇
  2002年   132篇
  2001年   91篇
  2000年   83篇
  1999年   84篇
  1998年   66篇
  1997年   55篇
  1996年   37篇
  1995年   38篇
  1994年   23篇
  1993年   20篇
  1992年   21篇
  1991年   24篇
  1990年   18篇
  1989年   13篇
  1988年   4篇
  1987年   10篇
  1986年   5篇
  1985年   26篇
  1984年   21篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1974年   2篇
  1969年   1篇
排序方式: 共有8425条查询结果,搜索用时 15 毫秒
61.
烷类特种气体分析装置的研制及其应用   总被引:1,自引:0,他引:1  
研制烷类特种气体分析专用的多维气相色谱仪,特制的热导检测器,具有手动-自动功能。设计了输气-配气装置和多维气相色谱流程。以微机控制,可按编辑程序清洗系统。检查本底,自动进样,显示或打印谱图和分析结果。可检测多种烷类特种气体组份及其中氧,氮,一氧化碳和甲烷等痕量杂质。  相似文献   
62.
Nitrogen doped carbon nanosheets supported molybdenum carbides nanoparticles (MoxC/NCS) have been synthesized by tuning the mass ratio of melamine and ammonia molybdate. The Mo2C/NCS-10 exhibits superior electrocatalytic performance and stability for HER, which was attributed to N-doped carbon nanosheets, small particle size, mesoporous structure, and large electrochemical active surface area.  相似文献   
63.
CO2 reduction processes continue to be developed for electrosynthesis, energy storage applications, and environmental remediation. A number of promising materials have shown high activity and selectivity to target reduction products. However, the progress has been mainly at a small laboratory scale, and the technical challenges of large scale CO2 reduction have not been considered adequately. This review covers recent advancements in catalyst materials and cell designs. The leading materials for CO2 reduction to a number of useful products are presented with their corresponding cell and reactor designs. The latest efforts to progress to industrially relevant scales are discussed, along with the challenges that must be met for carbon dioxide reduction to be a viable route for mass scale production.  相似文献   
64.
Amphiphilic polypyridyl mthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'- dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ)(K005) has been synthesized and characterized by cyclic voltammetry, ^1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the Ru^Ⅱ/Ⅲ couple by cyclic voltammetry. Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm^-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.  相似文献   
65.
Centrosymmetric linear [Ar-H-Ar]+ and asymmetric linear [Ar---Ar-H]+ are two stable configurations of [Ar2H]+. Based on the global potential energy surface of [Ar2H]+ provided by our group recently, we calculated the vibrational spectra of [Ar---Ar-H]+ with total angular momentum J = 0 by time-dependent quantum mechanical method, and the influence of quantum tunneling effect on vibrational spectra was found. With the help of the observation on the eigenstate functions and the modified potential energy surface, assignments were made to the spectra. The strong coupling between the excited bending mode of [Ar-H-Ar]+ and the vibrational states of [Ar---Ar-H]+ was discussed.  相似文献   
66.
《Electroanalysis》2006,18(2):186-194
The complex of osmium tetroxide with 2,2′‐bipyridine has been utilized as a probe of DNA structure and an electroactive marker of DNA in DNA hybridization sensors. It produces several voltammetric signals, the most negative of them has been observed only at mercury electrodes. This signal is of catalytic nature affording a high sensitivity of DNA determination. The catalytic current due to evolution of hydrogen in voltammetry of DNA modified by complex of osmium tetroxide with 2,2′‐bipyridine (DNA‐Os,bipy) was studied. Solid amalgam electrodes (modified with mercury menisci) of silver (m‐AgSAE), copper (m‐CuSAE), gold, and of combined bismuth and silver, were used as possible substitutes for mercury electrodes. Besides the hanging mercury drop electrode (HMDE), the catalytic current was observed only on m‐AgSAE and m‐CuSAE. Electrodes of gold and bismuth amalgams did not give the catalytic current. The detection limit of DNA‐Os,bipy on HMDE was 0.1 ng mL?1 (RSD=2.3 %, N=11), and on m‐AgSAE 0.2 ng mL?1 (RSD=3.1%, N=11). The m‐AgSAE was successfully applied as a detection electrode in double‐surface DNA hybridization experiments offering highly specific discrimination between complementary (target) and nonspecific DNAs, as well as determination of the length of a repetitive DNA sequence. The m‐AgSAE has proved a convenient alternative to the HMDE or carbon electrodes used for similar purposes in previous work.  相似文献   
67.
Quasi-solid-state electrolytes were fabricated with mesoporous silica SBA-15 as a framework material. Ionic conductivity measurements revealed that SBA-15 can enhance the conductivity of the quasi-solid-state electrolyte. The diffusion coefficients of polyiodide ions such as Ⅰ3ˉ and Ⅰ5ˉ which were confirmed by Raman spectroscopic measurement, were about twice larger than that of I-. The optimized photoenergy conversion efficiency of dye-sensitized solar cells (DSSC) with the quasi-solid-state electrolyte was 4.3% under AM 1.5 irradiation at 75 mW·cm^-2 light intensity.  相似文献   
68.
It has been established from geological studies that change in the atmospheric content of carbon dioxide gas commenced about one hundred million years ago. The likely origin of this change is advanced as being the onset of the Brewer circulation caused by the rise in terrain induced by tectonic plate movement. It is demonstrated that tectonic plate movement can be affected by impacts from external bodies which penetrate the crust of the Earth. The consequences of the change in atmospheric concentration of carbon dioxide are proposed as first, extinctions and reductions in animal numbers, including primates, as a result of changes in body chemistry of these animals and second, a change in the rate of weathering of rocks giving rise to changes in the availability of chemicals such as calcium and potassium which are essential for plant and animal life. This latter change contributing to the extinctions and reductions in animal numbers. It is shown that the change in weathering can account for the rise to dominance of angiosperm plants. It is concluded that there were several simultaneous evolutionary environments on Earth which were a function of altitude which gave rise to a vertical variation in atmospheric content of carbon dioxide. This variation disappeared with rise of terrain and the onset of the Brewer circulation. Such changes are advanced and being much more important than any changes in temperature caused by greenhouse effects since the disappearance of atmospheric variations in carbon dioxide allowed animal migration. It is demonstrated that the conditions of extinction could be reintroduced by human activities.  相似文献   
69.
With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.  相似文献   
70.
The production of chemicals and fuels, or energy-rich compounds, from water by sunlight is described as a particularly attractive means for the conversion of solar energy to a valuable renewable resource. The redox properties of photoexcited molecules and the operating mechanism of light-driven systems are first considered. The mechanism of water oxidation carried out by higher plants and green algae-which is actually one of the most important biochemical reactions—as well as that of artificial photosystems, up-to-now designed trying to simulate the natural process with higher efficiency and simplicity, are likewise discussed. A number of biological and chemical light-driven systems are presented as practical ways to solar energy conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号