首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1251篇
  免费   147篇
  国内免费   219篇
化学   1493篇
晶体学   4篇
力学   3篇
综合类   4篇
数学   2篇
物理学   111篇
  2024年   2篇
  2023年   12篇
  2022年   57篇
  2021年   57篇
  2020年   70篇
  2019年   50篇
  2018年   49篇
  2017年   39篇
  2016年   78篇
  2015年   61篇
  2014年   59篇
  2013年   72篇
  2012年   82篇
  2011年   69篇
  2010年   62篇
  2009年   71篇
  2008年   62篇
  2007年   74篇
  2006年   51篇
  2005年   60篇
  2004年   45篇
  2003年   45篇
  2002年   89篇
  2001年   40篇
  2000年   29篇
  1999年   33篇
  1998年   32篇
  1997年   19篇
  1996年   17篇
  1995年   17篇
  1994年   16篇
  1993年   16篇
  1992年   14篇
  1991年   13篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
排序方式: 共有1617条查询结果,搜索用时 15 毫秒
991.
992.
The high selectivities of liquid chromatography and mass spectrometry make liquid chromatography–mass spectrometry one of the most popular tools for quantitative analysis in complex chemical, biological, and environmental systems, while the potential mathematical selectivity of liquid chromatography–mass spectrometry is rarely investigated. This work discussed the mathematical selectivity of liquid chromatography–mass spectrometry by three‐way calibration based on the trilinear model, with an application to quantitative analysis of coeluting aromatic amino acids in human plasma. By the trilinear decomposition of the constructed liquid chromatography–mass spectrometry‐sample trilinear model and individual regression of the decomposed relative intensity versus concentration, the proposed three‐way calibration method successfully achieved quantitative analysis of coeluting aromatic amino acids in human plasma, even in the presence of uncalibrated interferent(s) and a varying background. This analytical method can ease the requirements for sample preparation and complete chromatographic separation of components, reduce the use of organic solvents, decrease the time of chromatographic separation, and increase the peak capacity of liquid chromatography–mass spectrometry. As a “green analytical method”, the liquid chromatography–mass spectrometry three‐way calibration method can provide a promising tool for direct and fast quantitative analysis in complex systems containing uncalibrated spectral interferents, especially for the situation where the coelution problem is difficult to overcome.  相似文献   
993.
Alpha- and beta-linked 1,3-glucans have been subjected to conversion with p-toluenesulfonic acid (tosyl) chloride and triethylamine under homogeneous reaction conditions in N,N-dimethyl acetamide/LiCl. Samples with a degree of substitution of tosyl groups (DSTs) of up to 1.91 were prepared by applying 5 mol reagent per mole repeating unit. Hence, the reactivity of α-1,3-glucan is comparable with cellulose and starch, while the β-1,3-linked glucan curdlan is less reactive. The samples dissolve in aprotic dipolar media independent of the DSTs and possess a solubility in less polar solvents that depends on the DSTs. NMR studies on the tosyl glucans and of the peracylated derivatives showed a preferred tosylation of position 2 of the repeating unit. However, the selectivity is less pronounced compared with starch. It could be concluded that the α-configurated glycosidic bond directs tosyl groups towards position 2.  相似文献   
994.
In organic synthesis, due to their high electrophilicity and leaving group properties, halogens play pivotal roles in the activation and structural derivations of organic compounds. Recently, cyclizations induced by halogen groups that allow the production of diverse targets and the structural reorganization of organic molecules have attracted significant attention from synthetic chemists. Electrophilic halogen atoms activate unsaturated and saturated hydrocarbon moieties by generating halonium intermediates, followed by the attack of carbon-containing, nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to give highly functionalized carbocycles and heterocycles. New transformations of halogenated organic molecules that can control the formation and stereoselectivity of the products, according to the difference in the size and number of halogen atoms, have recently been discovered. These unique cyclizations may possibly be used as efficient synthetic strategies with future advances. In this review, innovative reactions controlled by halogen groups are discussed as a new concept in the field of organic synthesis.  相似文献   
995.
We show that enantioselective reactions can be induced by the electron spin itself and that it is possible to replace a conventional enantiopure chemical reagent by spin‐polarized electrons that provide the chiral bias for enantioselective reactions. Three examples of enantioselective chemistry resulting from electron‐spin polarization are presented. One demonstrates the enantioselective association of a chiral molecule with an achiral self‐assembled monolayer film that is spin‐polarized, while the other two show that the chiral bias provided by the electron helicity can drive both reduction and oxidation in enantiospecific electrochemical reactions. In each case, the enantioselectivity does not result from enantiospecific interactions of the molecule with the ferromagnetic electrode but from the polarized spin that crosses the interface between the substrate and the molecule. Furthermore, the direction of the electron‐spin polarization defines the handedness of the enantioselectivity. This work demonstrates a new mechanism for realizing enantioselective chemistry.  相似文献   
996.
A robust self‐template strategy is used for facile and large‐scale synthesis of porous multishell gold with controllable shell number, sphere size, and in situ surface modification. The process involved the rapid reduction of novel Au‐melamine colloidal templates with a great amount of NaBH4 in presence of poly(sodium‐p‐styrenesulfonate) (PSS). After soaking the templates in other metal salt solution, the obtained bimetallic templates could also be generally converted into bimetallic multishell structures by same reduction process. In the hydrogenation of 4‐nitrostyrene using NH3BH3 as a reducing agent, the porous triple‐shell Au with surface modification (S‐PTSAu) exhibited excellent selectivity (97 %) for 4‐aminostyrene in contrast with unmodified triple‐shell Au. Furthermore, it also showed higher enhancement of catalytic activity under irradiation of visible light as compared to similar catalysts with fewer shells.  相似文献   
997.
Cyclooxygenase‐2 (COX‐2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX‐2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity‐based sensing approach for monitoring COX‐2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX‐2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen‐dependent changes in COX‐2 activity that are independent of protein expression within live macrophage cells.  相似文献   
998.
Porous single crystals which combine ordered lattice structures and disordered inter‐connected pores would provide an alternative to create twisted surface in porous microstructures. Now, transition‐metal nitride Nb4N5 and MoN single crystals are grown on a 2 cm scale to create well‐defined active structures at twisted surfaces. High catalytic activity and stability toward non‐oxidative dehydrogenation of ethane to ethylene is observed. Unsaturated metal–nitrogen coordination structures including Nb‐N1/5, Nb‐N2/5, Mo‐N1/3, and Mo‐N1/6 at the twisted surface mainly account for the C?H activation with chemisorption of H in molecular ethane at the twisted surface, which not only improves dehydrogenation performance but also avoids the deep cracking of ethane to enhance coking resistance. 11–25 % ethane conversion and 98–99 % ethylene selectivity is demonstrated without degradation being observed even after the operation of 50 hours.  相似文献   
999.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   
1000.
NOx存储-还原技术是控制汽车稀燃NOx排放的重要手段之一,在汽车尾气中H2O、CO2组分含量均相对较高,有必要弄清这些组分对NOx存储-还原特性的影响。论文以MnOx改性Pt/Ba/Al2O3催化剂为研究对象,评价在不同气氛下的NOx存储能力和催化还原性能。结果表明:CO2、H2O组分均抑制催化剂的NOx存储性能,H2O的抑制作用主要表现在低温区,CO2抑制NOx存储的现象在高温区更为显著。CO2对NOx存储速率的抑制作用较H2O更为明显,且其NOx存储速率随着温度的升高表现的差异性更为明显。对于NOx催化还原过程,CO2、H2O或CO2 H2O添加均导致N2选择性降低,其N2选择性按CO2 > H2O > CO2 H2O的顺序降低。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号