首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6280篇
  免费   665篇
  国内免费   478篇
化学   2858篇
晶体学   17篇
力学   184篇
综合类   25篇
数学   3641篇
物理学   698篇
  2024年   21篇
  2023年   50篇
  2022年   153篇
  2021年   242篇
  2020年   400篇
  2019年   351篇
  2018年   351篇
  2017年   132篇
  2016年   239篇
  2015年   248篇
  2014年   372篇
  2013年   405篇
  2012年   298篇
  2011年   496篇
  2010年   382篇
  2009年   474篇
  2008年   479篇
  2007年   520篇
  2006年   426篇
  2005年   244篇
  2004年   200篇
  2003年   208篇
  2002年   100篇
  2001年   54篇
  2000年   59篇
  1999年   67篇
  1998年   59篇
  1997年   43篇
  1996年   47篇
  1995年   30篇
  1994年   45篇
  1993年   36篇
  1992年   31篇
  1991年   20篇
  1990年   15篇
  1989年   15篇
  1988年   17篇
  1987年   19篇
  1986年   13篇
  1985年   19篇
  1984年   11篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   7篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有7423条查询结果,搜索用时 31 毫秒
181.
We present a topological characterization of the Sierpiński triangle. This answers question 58 from the Problem book of the Open Problem Seminar held at Charles University. In fact we give a characterization of the Apollonian gasket first. Consequently we show that any subcontinuum of the Apollonian gasket, whose boundary consists of three points, is homeomorphic to the Sierpiński triangle.  相似文献   
182.
183.
Nowadays sodium-based energy storage systems (Na-based ESSs) have been widely researched as it possesses the possibility to replace traditional energy storage media to become next generation energy storage system. However, due to the irreversible loss of sodium ions in the first cycle, development of Na-based ESSs is limited. Presodiation, as a strategy of adding excess sodium ions to the system in advance, accomplishes the enhancement of electrochemical performance. In this minireview, different presodiation strategies applied in sodium-based energy storage systems will be summarized in detail, their functions and corresponding mechanisms will be discussed as well. Furthermore, the current novel application of presodiation method in other aspects of Na-based ESSs will be mentioned additionally. At last, in the view of present research status of presodiation, issues that can be mitigated are put forward and guidelines are given on how to deliberate in-depth presodiation technology in the future, dedicating to promote the further development of Na-based ESSs.  相似文献   
184.
185.
The superior properties of nanomaterials with a special structure can provide prospects for highly efficient water splitting and lithium storage. Herein, we fabricated a series of peapodlike C@Ni2?xCoxP (x≤1) nanocomposites by an anion‐exchange pathway. The experimental results indicated that the HER activity of C@Ni2?xCoxP catalyst is strongly related to the Co/Ni ratio, and the C@NiCoP got the highest HER activity with low onset potential of ~45 mV, small Tafel slope of ~43 mV dec?1, large exchange current density of 0.21 mA cm?2, and high long‐term durability (60 h) in 0.5 m H2SO4 solutions. Equally importantly, as an anode electrode for lithium batteries, this peapodlike C@NiCoP nanocomposite gives excellent charge–discharge properties (e.g., specific capacity of 670 mAh g?1 at 0.2 A g?1 after 350 cycles, and a reversible capacity of 405 mAh g?1 at a high current rate of 10 A g?1). The outstanding performance of C@NiCoP in HER and LIBs could be attributed to the synergistic effect of the rational design of peapodlike nanostructures and the introduction of Co element.  相似文献   
186.
Dichloro[1,3‐bis(2,6‐di‐4‐heptylphenyl)imidazol‐2‐ylidene](3‐chloropyridyl)palladium(II) (Pd‐PEPPSI‐IHeptCl), a new, very bulky yet flexible Pd–N‐heterocyclic carbene (NHC) complex has been evaluated in the cross‐coupling of secondary alkylzinc reactants with a wide variety of oxidative addition partners in high yields and excellent selectivity. The desired, direct reductive elimination branched products were obtained with no sign of migratory insertion across electron‐rich and electron‐poor aromatics and all forms of heteroaromatics (five and six membered). Impressively, there is no impact of substituents at the site of reductive elimination (i.e., ortho or even di‐ortho), which has not yet been demonstrated by another catalyst system to date.  相似文献   
187.
高温高压化学反应对反应堆设备的可靠性、反应堆性能的控制、核电站运行的安全持久性等具有重要影响,但相关实验难以在高校教学中开展。借助PHREEQC程序及最新热力学数据,建立了反应堆一回路硼酸-氢氧化锂添加配比、腐蚀沉淀物产生及二回路pH控制方案的化学反应模型。运用化学模拟来教学,促进了学生对所学知识的理解与掌握,丰富了现代教学方法。相关模型对核电企业的培训也具有一定参考价值。  相似文献   
188.
The high charge–discharge voltage gap is one of the main bottlenecks of zinc–air batteries (ZABs) because of the kinetically sluggish oxygen reduction/evolution reactions (ORR/OER) on the oxygen electrode side. Thus, an efficient bifunctional catalyst for ORR and OER is highly desired. Herein, honeycomb-like MnCo2O4.5 spheres were used as an efficient bifunctional electrocatalyst. It was demonstrated that both ORR and OER catalytic activity are promoted by MnIV-induced oxygen vacancy defects and multiple active sites. Importantly, the multivalent ions present in the material and its defect structure endow stable pseudocapacitance within the inactive region of ORR and OER; as a result, a low charge–discharge voltage gap (0.43 V at 10 mA cm−2) was achieved when it was employed in a flexible hybrid Zn-based battery. This mechanism provides unprecedented and valuable insights for the development of next-generation metal–air batteries.  相似文献   
189.
Coordination polymers are promising cathode materials for rechargeable alkaline batteries. Therefore, the precise modulation of these cathodes by chemical structure and in-depth structure transform study is necessary. Here, two model coordination polymer battery cathodes were designed to demonstrate the dynamic structure–performance relationship. We studied the electrochemical performance of two kinds of nickel-based coordination polymer, comprising a planar 2D cyanide-bridged network and a 3D cyanide-bridged network pillared by pyrazine molecules. The 2D coordination polymer showed serious voltage degradation with poor rate capability, whereas the 3D coordination polymer exhibited stable voltage output coupled with high rate at various current densities. The investigation revealed the underlining relationship of plateau voltage degradation and hydrolysis process of electrodes. It was revealed that the pyrazine pillar molecules in the 3D coordination polymer could suppress the hydrolysis and lead to the in situ formation of partially hydrolyzed structure with excellent electrochemical kinetics; this exhibited obvious smaller peak separation (27 mV compared with 149 mV) and hence an almost twofold increase in capacity retention (31.9 to 50.0 %) and energy density retention (18.2 to 35.9 %) at 10 A g−1.  相似文献   
190.
Lithium metal anodes (LMAs) with high energy density have recently captured increasing attention for development of next-generation batteries. However, practical viability of LMAs is hindered by the uncontrolled Li dendrite growth and infinite dimension change. Even though constructing 3D conductive skeleton has been regarded as a reliable strategy to prepare stable and low volume stress LMAs, engineering the renewable and lithiophilic conductive scaffold is still a challenge. Herein, a robust conductive scaffold derived from renewable cellulose paper, which is coated with reduced graphene oxide and decorated with lithiophilic Au nanoparticles, is engineered for LMAs. The graphene cellulose fibres with high surface area can reduce the local current density, while the well-dispersed Au nanoparticles can serve as lithiophilic nanoseeds to lower the nucleation overpotential of Li plating. The coupled relationship can guarantee uniform Li nucleation and unique spherical Li growth into 3D carbon matrix. Moreover, the natural cellulose paper possesses outstanding mechanical strength to tolerate the volume stress. In virtue of the modulated deposition behaviour and near-zero volume change, the hybrid LMAs can achieve reversible Li plating/stripping even at an ultrahigh current density of 10 mA cm−2 as evidenced by high Coulombic efficiency (97.2 % after 60 cycles) and ultralong lifespan (1000 cycles) together with ultralow overpotential (25 mV). Therefore, this strategy sheds light on a scalable approach to multiscale design versatile Li host, promising highly stable Li metal batteries to be feasible and practical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号