首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13555篇
  免费   2066篇
  国内免费   1534篇
化学   5331篇
晶体学   166篇
力学   1154篇
综合类   82篇
数学   879篇
物理学   9543篇
  2024年   16篇
  2023年   100篇
  2022年   218篇
  2021年   257篇
  2020年   265篇
  2019年   303篇
  2018年   338篇
  2017年   415篇
  2016年   507篇
  2015年   472篇
  2014年   665篇
  2013年   1161篇
  2012年   754篇
  2011年   958篇
  2010年   722篇
  2009年   927篇
  2008年   932篇
  2007年   1030篇
  2006年   902篇
  2005年   771篇
  2004年   712篇
  2003年   578篇
  2002年   600篇
  2001年   479篇
  2000年   478篇
  1999年   402篇
  1998年   362篇
  1997年   241篇
  1996年   255篇
  1995年   220篇
  1994年   190篇
  1993年   132篇
  1992年   135篇
  1991年   102篇
  1990年   65篇
  1989年   71篇
  1988年   71篇
  1987年   53篇
  1986年   34篇
  1985年   46篇
  1984年   43篇
  1983年   14篇
  1982年   39篇
  1981年   35篇
  1980年   9篇
  1979年   15篇
  1978年   16篇
  1977年   8篇
  1976年   10篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
31.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   
32.
P. S. Goyal 《Pramana》2004,63(1):15-24
Inter University Consortium for Department of Atomic Energy Facilities (IUC-DAEF) is an autonomous institute of the University Grants Commission and provides an interface between the university fraternity and the institutions of Department of Atomic Energy. Mumbai Centre of IUC-DAEF promotes and supports the use of neutron facilities at Dhruva reactor by the university scientists. To augment the existing neutron scattering facilities, IUC-DAEF has developed a neutron beam line at Dhruva reactor. The present paper gives a brief survey of the activities and achievements of Mumbai Centre of IUC-DAEF.  相似文献   
33.
An investigation was made of the gelation of dimethacrylate‐type crosslinking agents in view of an application for separation media. The study mainly centered on a crosslinking agent, glycerol dimethacrylate (GDMA), which is relatively hydrophilic because of a hydroxyl group in the middle of its structure. The gelation of GDMA was compared with that of other hydrophobic crosslinking agents such as ethylene glycol dimethacrylate and 1,6‐hexanediol dimethacrylate. The diluents used in the study were toluene, toluene with methanol, and cyclohexanol. The gelation was observed in real time with a charge coupled device camera and dynamic light scattering (DLS). Also, the separated dry gels were extensively characterized with scanning electron microscopy, BET (N2 absorption and desorption isotherm), and Fourier transform infrared. DLS analysis showed a stronger molecular interaction of GDMA gelation in toluene, whereas this interaction was much weaker in an alcoholic solvent such as toluene with methanol or cyclohexanol. This indicated that GDMA gelation might proceed through hydrogen bonding as well as a crosslinking reaction of vinyl groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 949–958, 2006  相似文献   
34.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   
35.
A series of acrylic impact modifiers (AIMs) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle–ductile transition of impact‐modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 °C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle–ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2–341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle–ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle–ductile transition for the PVC/AIM blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 696–702, 2006  相似文献   
36.
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006  相似文献   
37.
The problem considered is that of determining the shape of aplane acoustically sound-soft obstacle from the knowledge ofthe far-field pattern for one time-harmonic incident field.An iterative procedure is proposed based on two boundary integralsrepresenting the incident field and the far-field pattern, respectively.Numerical examples are included which show that the proceduregives accurate numerical approximations in relatively few iterations.  相似文献   
38.
Poly(siloxaneimide) (PSI) segmented copolymers exhibit organized microdomains if the blocks are sufficiently incompatible. As with neat diblock and triblock copolymers, the processing route employed to prepare films of PSI materials is expected to influence the dimensions and/or morphology of the resultant microstructure. In this work, small-angle neutron scattering (SANS) is utilized to characterize the disordered microstructure found in films of a series of PSI copolymers which are subjected to solvent casting and various thermal treatments. Microstructural dimensions such as the periodicity and correlation length are deduced from the Teubner-Strey (TS) model for disordered microemulsions. The scattering intensity of each copolymer up to q = 5.0 nm?1, where q is the scattering vector, is found to scale as q?2.8+?0.1. Results indicate that processing the materials as cast films or as melt-pressed films allowed to cool slowly has a small, but discernible, effect on microstructural characteristics. SANS profiles of films quenched from elevated temperatures reveal a clear transition in microdomain periodicity, which correlates well with the glass transition temperature of the imide microphase in these and other materials of similar chemical structure. © 1993 John Wiley & Sons, Inc.  相似文献   
39.
A theory is developed for the potential distribution around a charged spherical colloidal particle carrying ionized groups on the particle surface in a medium containing its counterions (i.e., counterions produced from dissociation of the particle surface groups) and a small amount of added salts on the basis of the theory of Imai and Oosawa. Numerical solutions to the Poisson–Boltzmann equation for the potential distribution are obtained for the case of dilute (but not infinitely dilute) particle suspensions of volume fraction 1 for a1 (where is the Debye–Hückel parameter and a is the particle radius). Here we have taken into account the effects of (i) counterions from the particle surface groups, and (ii) the finite particle volume fraction. These effects, which are usually neglected in the conventional Poisson–Boltzmann equation, are found to be important. It is found that, as in the case of completely salt-free media, there is a certain critical value of the particle charge (which is the same as that for the completely salt-free case). When the particle charge is lower than the critical value, the potential is given by a Coulomb potential. If the particle charge is higher than the critical value, then counterions are accumulated in the vicinity of the particle surface (counterion condensation) and the potential becomes less dependent on the particle charge. The above behaviors can be observed even for the case where the electrolyte concentration is higher than the concentration of counterions from the particle surface groups, if the conditions 1 and a1are both satisfied.  相似文献   
40.
The theory of new type detectors based on the quenching of secondary emission in direct-gap semiconductors (lines of Raman light scattering due to interaction between free and bound excitons in the crystal, and also bands of edge radiation) caused by IR or submillimeter radiation is proposed. The results obtained are confirmed by the experiment performed for CdS crystal excited by ultraviolet radiation of mercury lamp, at liquid helium temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号