全文获取类型
收费全文 | 10348篇 |
免费 | 1874篇 |
国内免费 | 1428篇 |
专业分类
化学 | 5747篇 |
晶体学 | 384篇 |
力学 | 1015篇 |
综合类 | 143篇 |
数学 | 233篇 |
物理学 | 6128篇 |
出版年
2024年 | 19篇 |
2023年 | 74篇 |
2022年 | 262篇 |
2021年 | 311篇 |
2020年 | 296篇 |
2019年 | 278篇 |
2018年 | 303篇 |
2017年 | 417篇 |
2016年 | 492篇 |
2015年 | 393篇 |
2014年 | 526篇 |
2013年 | 957篇 |
2012年 | 697篇 |
2011年 | 651篇 |
2010年 | 605篇 |
2009年 | 637篇 |
2008年 | 585篇 |
2007年 | 673篇 |
2006年 | 628篇 |
2005年 | 551篇 |
2004年 | 521篇 |
2003年 | 466篇 |
2002年 | 404篇 |
2001年 | 350篇 |
2000年 | 338篇 |
1999年 | 332篇 |
1998年 | 254篇 |
1997年 | 215篇 |
1996年 | 198篇 |
1995年 | 166篇 |
1994年 | 150篇 |
1993年 | 160篇 |
1992年 | 131篇 |
1991年 | 80篇 |
1990年 | 73篇 |
1989年 | 68篇 |
1988年 | 87篇 |
1987年 | 48篇 |
1986年 | 40篇 |
1985年 | 28篇 |
1984年 | 21篇 |
1983年 | 10篇 |
1982年 | 28篇 |
1981年 | 23篇 |
1980年 | 20篇 |
1979年 | 26篇 |
1978年 | 18篇 |
1977年 | 11篇 |
1976年 | 10篇 |
1973年 | 5篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Saqlain Abbas Fucai Li Zulkarnain Abbas Taufeeq Ur Rehman Abbasi Xiaotong Tu Riffat Asim Pasha 《声与振动》2021,55(1):1-18
Structural health monitoring (SHM) is recognized as an efficient tool to interpret the reliability of a wide variety of infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs). The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process. In this framework, an experimental setup is developed in current research to identify the presence of fatigue crack in stainless steel (304) beam using EMI approach and estimate the effect of temperature variations on the electrical impedance of the piezoelectric sensors. A regular series of experiments are executed in a controlled temperature environment (25°C–160°C) using 202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005). It has been observed that the dielectric constant ε33T which is recognized as the temperature-dependent constant of PZT sensor has sufficiently influenced the electrical impedance signature. Moreover, the effective frequency shift (EFS) approach is optimized in term of significant temperature compensation for the current impedance signature of PZT sensor relative to the reference signature at the extended frequency bandwidth of the developed measurement system with better outcomes as compared to the previous literature work. Hence, the current study also deals efficiently with the critical issue of the width of the frequency band for temperature compensation based on the frequency shift in SHM. The results of the experimental study demonstrate that the proposed methodology is qualified for the damage inspection in real-time monitoring applications under the temperature variations. It is capable to exclude one of the major reasons of false fault diagnosis by compensating the consequence of elevated temperature at extended frequency bandwidth in SHM. 相似文献
82.
Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature. 相似文献
83.
Nong-Chao Xin 《中国物理 B》2021,30(11):113701-113701
Molecular dynamics simulation of a sympathetically-cooled 113Cd+ ion crystal system is achieved. Moreover, the relationship between ions' axial temperature and different electric parameters, including radio frequency voltage and end-cap voltage is depicted. Under stable trapping condition, optimum radio frequency voltage, corresponding to minimum temperature and the highest cooling efficiency, is obtained. The temperature is positively correlated with end-cap voltage. The relationship is also confirmed by a sympathetically-cooled 113Cd+ microwave clock. The pseudo-potential model is used to illustrate the relationship and influence mechanism. A reasonable index, indicating ions' temperature, is proposed to quickly estimate the relative ions' temperature. The investigation is helpful for ion crystal investigation, such as spatial configuration manipulation, sympathetic cooling efficiency enhancement, and temporal evolution. 相似文献
84.
Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity 下载免费PDF全文
An ultra-longer fiber cantilever taper for simultaneous measurement of the temperature and relative humidity (RH) with high sensitivities was proposed. The structure was fabricated by using the simple and cost-effective method only including fiber cleaving, splicing, and tapering. The length of the cantilever taper is about 1.5 mm. The dip A and dip B were measured simultaneously, owing to the ultra-long length and super-fine size, the temperature sensitivities of the dip A and dip B reached as high as 127.3 pm/℃ and 0 pm/℃ between 25 ℃ and 50 ℃, and the RH sensitivities are -31.2 pm/% RH and -29.2 pm/% RH with a broad RH interval ranging from 20% RH to 70% RH. Besides, the proposed structure showed good linearity in the sensing process and small temperature crosstalk. It will be found in wide applications in environmental monitoring, food processing, and industries. 相似文献
85.
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices. 相似文献
86.
The effects of pre-equilibrium emission and secondary decay on the determination of the freeze-out volume are investigated using the isospin-dependent quantum molecular dynamics model accompanied by the statistical decay model GEMINI. Small-mass projectiles and large-mass targets with central collisions are studied at intermediate energies. It is revealed that the proton yields of pre-equilibrium emission are smaller than those of secondary decay. However, the determination of the freeze-out volume from the proton yields is more easily affected by pre-equilibrium emission. Moreover, the percentage of proton yields in the freeze-out stage is found to be approximately 50%. 相似文献
87.
88.
89.
采用量子 Sutton-Chen多体势, 对熔体初始温度热历史条件对液态金属Ni快速凝固过程中微观结构演变的影响进行了分子动力学模拟研究. 采用双体分布函数g(r)曲线、键型指数法、原子团类型指数法和三维可视化等分析方法对凝固过程中微观结构的演变进行了分析. 结果表明: 熔体初始温度对凝固微结构有显著影响, 但在液态和过冷态时的影响并不明显, 只有在结晶转变温度Tc附近才开始充分显现出来. 体系在1×1012 K/s的冷速下, 最终均形成以1421和1422键型或面心立方(12 0 0 0 12 0)与六角密集(12 0 0 0 6 6) 基本原子团为主的晶态结构. 末态时, 不同初始温度体系中的主要键型和团簇的数目有很大的变化范围, 且与熔体初始温度的高低呈非线性变化关系. 然而, 体系能量随初始温度呈线性变化关系, 初始温度越高, 末态能量越低, 其晶化程度越高. 通过三维可视化分析进一步发现, 在初始温度较高的体系中, 同类团簇结构的原子出现明显的分层聚集现象, 随着初始温度的下降, 这种分层现象将被弥散开去. 可视化分析将更有助于对凝固过程中微观结构演变进行更为深入的研究.
关键词:
液态金属Ni
熔体初始温度
微观结构
分子动力学模拟 相似文献
90.
基于电化学-热耦合模型研究聚合物锂离子动力电池放电过程热行为, 分析了放电倍率、冷却条件对电池放电过程的温度变化及分布的影响规律. 结果表明: 3C放电时, 模型计算结果与实测结果的平均偏差为0.57 K, 方差为0.15, 说明模型准确度较高. 电芯的平均生热率在整个放电过程中呈现出增加的趋势, 初期和末期增长较快. 大倍率放电时, 与电流密度的平方呈正比的不可逆热所占的比重较大, 小倍率放电时, 电化学反应可逆热占主导. 改善冷却条件能降低电池放电过程的平均温度, 对流传热过程的表面传热系数为5 W/(m2·K), 1 C, 3 C, 5 C放电结束时, 电芯的平均温升为分别为6.46 K, 17.67 K, 27.53 K, 当对流传热过程的表面传热系数增加至25 W/(m2·K)时, 温升比自然对流条件下相同倍率放电时的温度分别降低了2.91 K, 4.68 K, 5.62 K, 但电芯温度分布的不一致性也会加剧.
关键词:
电化学
耦合
锂离子动力电池
温度分布 相似文献