首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7850篇
  免费   1012篇
  国内免费   909篇
化学   4897篇
晶体学   89篇
力学   622篇
综合类   95篇
数学   154篇
物理学   3914篇
  2024年   23篇
  2023年   114篇
  2022年   376篇
  2021年   391篇
  2020年   372篇
  2019年   257篇
  2018年   215篇
  2017年   390篇
  2016年   439篇
  2015年   404篇
  2014年   524篇
  2013年   571篇
  2012年   582篇
  2011年   533篇
  2010年   386篇
  2009年   461篇
  2008年   442篇
  2007年   471篇
  2006年   389篇
  2005年   337篇
  2004年   337篇
  2003年   260篇
  2002年   268篇
  2001年   158篇
  2000年   180篇
  1999年   161篇
  1998年   149篇
  1997年   122篇
  1996年   85篇
  1995年   71篇
  1994年   62篇
  1993年   53篇
  1992年   40篇
  1991年   39篇
  1990年   37篇
  1989年   17篇
  1988年   16篇
  1987年   14篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1957年   1篇
排序方式: 共有9771条查询结果,搜索用时 15 毫秒
971.
In this study, we report the design and synthesis of a series of new simplified fumitremorgin C analogues. The preliminary biological study indicated some of these simplified fumitremorgin C might be developed into breast cancer resistance inhibitors.  相似文献   
972.
In this paper, 2-(2′-hydroxy-phenyl)-4(3H)-quinazolinone (HPQ), a typical compound that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesized and used as fluoroionophore for Fe3+ sensitive optochemical sensor. The decrease of fluorescence intensity of HPQ membrane upon the addition of Fe3+ was attributed to the blocking of ESIPT reactions of HPQ and quenching its fluorescence. The effect of the composition of the sensing membrane was studied, and experimental conditions were optimized. The sensor shows a linear response toward Fe3+ in the concentration range of 7.1 × 10−7 M to 1.4 × 10−4 M with a limit of detection of 8.0 × 10−8 M, and a working pH range from 2.5 to 4.5. It shows excellent selectivity for Fe3+ over a large number of cations such as alkali, alkaline earth and transitional metal ions. The proposed sensor is applied to the determination of the content of iron ions in pharmaceutical preparations samples with satisfactory results.  相似文献   
973.
Non-aqueous size exclusion chromatography (SEC) of polystyrenes (as model analytes) is examined using the microscale molar mass sensor (μ-MMS) for detection. The μ-MMS is combined with SEC to demonstrate this simultaneously universal and molar mass selective detection method for polymer characterization. The μ-MMS is based on measuring the refractive index gradient (RIG) at two positions (upstream and downstream) within a T-shaped microfluidic channel. The RIG is produced from a sample stream (eluting analytes in the mobile phase) merging with a mobile phase stream (mobile phase only). The magnitude of the RIG is measured as a probe beam deflection angle and is related to analyte diffusion coefficient, the time allowed for analyte diffusion from the sample stream toward the mobile phase stream, and the bulk phase analyte refractive index difference relative to the mobile phase. Thus, two deflection angles are measured simultaneously, the upstream angle and the downstream angle. An angle ratio is calculated by dividing the downstream angle by the upstream angle. The μ-MMS was found to extend the useful molar mass calibration range of the SEC system (nominally limited by the total exclusion and total permeation regions from ∼100,000 g/mol to ∼800 g/mol), to a range of 3,114,000-162 g/mol. The injected concentration LOD (based on 3 s statistics) was 2 ppm for the upstream detection position. The point-by-point time-dependent ratio, termed a ‘ratiogram’, is demonstrated for resolved and overlapped peaks. Within detector band broadening produces some anomalies in the ratiogram shapes, but with highly overlapped distributions of peaks this problem is diminished. Ratiogram plots are converted to molar mass as a function of time, demonstrating the utility of SEC/μ-MMS to examine a complex polymer mixture.  相似文献   
974.
Chen J  Zheng A  Chen A  Gao Y  He C  Kai X  Wu G  Chen Y 《Analytica chimica acta》2007,599(1):134-142
A gold-nanoparticles (Au NPs)-Rhodamine 6G (Rh6G) based fluorescent sensor for detecting Hg (II) in aqueous solution has been developed. Water-soluble and monodisperse gold nanoparticles (Au NPs) has been prepared facilely and further modified with thioglycolic acid (TGA). Free Rh6G dye was strongly fluorescent in bulk solution. The sensor system composing of Rh6G and Au NPs fluoresce weakly as result of fluorescence resonance energy transfer (FRET) and collision. The fluorescence of Rh6G and Au NPs based sensor was gradually recovered due to Rh6G units departed from the surface of functionalized Au NPs in the presence of Hg(II). Based on the modulation of fluorescence quenching efficiency of Rh6G-Au NPs by Hg(II) at pH 9.0 of teraborate buffer solution, a simple, rapid, reliable and specific turn-on fluorescent assay for Hg(II) was proposed. Under the optimum conditions, the fluorescence intensity of sensor is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 5.0 × 10−10 to 3.55 × 10−8 mol L−1, and the corresponding limit of detection (LOD) is low as 6.0 × 10−11 mol L−1. The relative standard deviation of 10 replicate measurements is 1.5% for 2.0 × 10−9 mol L−1 Hg(II). In comparison with conventional fluorimetric methods for detection of mercury ion, the present nanosensor endowed with higher sensitivity and selectivity for Hg(II) in aqueous solution. Mercury(II) of real environmental water samples was determined by our proposed method with satisfactory results that were obtained by atomic absorption spectroscopy (AAS).  相似文献   
975.
Molecularly imprinted polymers (MIPs) selective for lysozyme were prepared on SPR sensor chips by radical co-polymerization with acrylic acid and N,N′-methylenebisacrylamide. Gold-coated SPR sensor chips were modified with N,N′-bis(acryloyl)cystamine, on which MIP thin films were covalently conjugated. The presence of NaCl during the polymerization and the re-binding tests affected the selectivity and the optimization of NaCl concentration in the pre-polymerization mixture and the re-binding buffer could enhance the selectivity in the target protein sensing. When the lysozyme-imprinted polymer thin films were prepared in the presence of 40 mM NaCl, the selectivity factor (target protein bound/reference protein bound) of MIP in the re-binding buffer containing 20 mM NaCl was 9.8, meanwhile, that of MIP in the re-binding buffer without NaCl was 1.2. A combination of SPR sensing technology with protein-imprinted thin films is a promising tool for the construction of selective protein sensors.  相似文献   
976.
Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.  相似文献   
977.
The novel hierarchical flower-like superstructure NiCo2O4/reduced graphene oxide (rGO) hybrids have been successfully synthesized with a facile one-step hydrothermal process for the determination of fungicide pyrimethanil (PMT). For comparison, various structures of NiCo2O4/rGO including hexagonal nanoplates and nanorods were also synthesized. Among them, three-dimensional (3D) flower-like NiCo2O4/rGO exhibited the highest electrocatalytic activity for the oxidation of PMT. With the synergistic effect of [OMIM]PF6 ionic liquid (IL), the electrochemical sensor film (NiCo2O4/rGO/IL) further facilitated interfacial electron transfer and enhanced electrocatalytic activity for the oxidation of PMT. Under the optimum conditions, the electrochemical sensor exhibited two linear ranges of 0.1–10.0 μmol/L and 20.0–140 μmol/L for PMT with a low detection concentration of 11.0 nmol/L. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. The proposed method was successfully applied to the detection of PMT in water, seawater, fruits and vegetables with good recovery ranging from 93% to 105%, and possessed potential applications in the analysis of real samples.  相似文献   
978.
李嘉 《化学教育》2016,37(21):59-62
影响洗涤剂去油污能力的关键因素是表面活性剂的乳化能力,为了探究不同洗涤剂乳化能力的强弱,先利用手持技术对常用表面活性剂十二烷基苯磺酸钠的水溶液进行了探究,结果发现乳化能力的强弱可以通过乳状液的电导率下降比率来反映。因此利用手持技术,通过电导率传感器采集不同洗涤剂与植物油混合搅拌时乳状液的电导率下降比率,来判断其去油污能力的强弱。  相似文献   
979.
The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene–carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene–CNT–IL nanocomposite (graphene–CNT–IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene–CNT–IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene–CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.  相似文献   
980.
The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu2+ was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu2+, sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu2+ concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu2+ in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu2+ in living cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号