首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2275篇
  免费   536篇
  国内免费   288篇
化学   310篇
晶体学   7篇
力学   458篇
综合类   35篇
数学   589篇
物理学   1700篇
  2024年   5篇
  2023年   30篇
  2022年   36篇
  2021年   40篇
  2020年   93篇
  2019年   96篇
  2018年   97篇
  2017年   96篇
  2016年   77篇
  2015年   91篇
  2014年   133篇
  2013年   213篇
  2012年   120篇
  2011年   167篇
  2010年   160篇
  2009年   167篇
  2008年   147篇
  2007年   110篇
  2006年   158篇
  2005年   136篇
  2004年   160篇
  2003年   136篇
  2002年   109篇
  2001年   84篇
  2000年   85篇
  1999年   58篇
  1998年   61篇
  1997年   38篇
  1996年   30篇
  1995年   23篇
  1994年   17篇
  1993年   16篇
  1992年   24篇
  1991年   13篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1977年   4篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1959年   1篇
  1957年   5篇
排序方式: 共有3099条查询结果,搜索用时 15 毫秒
71.
Long‐range β‐ and γ‐relativistic effects of halogens in 15N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5‐triazines) are shown to be unessential for fluoro‐, chloro‐, and bromo‐derivatives (1–2 ppm in average). However, for iodocontaining compounds, β‐ and γ‐relativistic effects are important contributors to the accuracy of the 15N calculation. Taking into account long‐range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15N NMR chemical shifts of the title compounds calculated at the non‐relativistic and full 4‐component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non‐relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4‐component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long‐range relativistic effects play a major role (of up to dozen of parts per million) in 15N NMR chemical shifts of halogenated nitrogen‐containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.  相似文献   
72.
Four‐component relativistic calculations of 77Se–13C spin–spin coupling constants have been performed in the series of selenium heterocycles and their parent open‐chain selenides. It has been found that relativistic effects play an essential role in the selenium–carbon coupling mechanism and could result in a contribution of as much as 15–25% of the total values of the one‐bond selenium–carbon spin‐spin coupling constants. In the overall contribution of the relativistic effects to the total values of 1J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin‐orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second‐order polarization propagator approach (CC2) with the four‐component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of 1J(Se,C). Solvent effects in the values of 1J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2–78.4) are next to negligible decreasing negative 1J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of 77Se–13C spin‐spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1–0.2‐Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
73.
The theory of physical dimensions and units in physics is outlined. This includes a discussion of the universal applicability and superiority of quantity equations. The International System of Units (SI) is one example thereof. By analyzing mechanics and electrodynamics, it naturally leads one, besides the dimensions of length and time, to the fundamental units of action h , electric charge q, and magnetic flux ?. Also, q × ? = action and q / ? = 1 / resistance are known. These results of classical physics suggests to look into the corresponding quantum aspects of q and ? (and also of h ): The electric charge occurs exclusively in elementary charges e, whereas the magnetic flux can have any value; in specific situations, however, in superconductors of type II at very low temperatures, ? appears quantized in the form of fluxons (Abrikosov vortices). And h leads, of course, to the Planck quantum h. Thus, one is directed to superconductivity and, because of the resistance, to the quantum Hall effect. In this way, the Josephson and the quantum Hall effects come into focus quite naturally. One goal is to determine the behavior of the fundamental constants in special and in general relativity.  相似文献   
74.
We discuss the continuum medium theory that enables us to find the defect contribution to phase transition anomalies with the use of only a few phenomenological parameters. The theory is invalid in the immediate vicinity of the phase transition temperature and for high concentration of defects. The possibilities of interpretation of experimental data on the basis of the theory are also discussed.  相似文献   
75.
Spin-orbit (SO) heavy-atom on the light-atom (SO-HALA) effect is the largest relativistic effect caused by a heavy atom on its light-atom neighbors, leading, for example, to unexpected NMR chemical shifts of 1H, 13C, and 15N nuclei. In this study, a combined experimental and theoretical evidence for the SO-HALA effect transmitted through hydrogen bond is presented. Solid-state NMR data for a series of 4-dimethylaminopyridine salts containing I, Br and Cl counter ions were obtained experimentally and by theoretical calculations. A comparison of the experimental chemical shifts with those calculated by a standard DFT methodology without the SO contribution to the chemical shifts revealed a remarkable error of the calculated proton chemical shift of a hydrogen atom that is in close contact with the iodide anion. The addition of the relativistic SO correction in the calculations significantly improves overall agreement with the experiment and confirms the propagation of the SO-HALA effect through hydrogen bonds.  相似文献   
76.
In this paper, the authors consider the asymptotic synchronization of a linear dissipative system with multiple feedback dampings. They ?rst show that under the observability of a scalar equation, Kalman’s rank condition is su?cient for the uniqueness of solution to a complex system of elliptic equations with mixedobservations. The authors then establish a general theory on the asymptotic stability and the asymptotic synchronization for the corresponding evolutional system subjected to mixed dampings of various natures. Some classic models are presented to illustrate the ?eld of applications of the abstract theory.  相似文献   
77.
In our previous two works, we studied the blow-up and lifespan estimates for damped wave equations with a power nonlinearity of the solution or its derivative, with scattering damping independently. In this work, we are devoted to establishing a similar result for a combined nonlinearity. Comparing to the result of wave equation without damping, one can say that the scattering damping has no influence.  相似文献   
78.
Two treatments of relativistic effects, namely effective core potentials (ECP) and all‐electron scalar relativistic effects (DKH2), are used to obtain geometries and chemical reaction energies for a series of ruthenium complexes in B3LYP/def2‐TZVP calculations. Specifically, the reaction energies of reduction ( A ‐ F ), isomerization ( G‐I ), and Cl negative trans influence in relation to NH3 ( J ‐ L ) are considered. The ECP and DKH2 approaches provided geometric parameters close to experimental data and the same ordering for energy changes of reactions A ‐ L . From geometries optimized with ECP, the electronic energies are also determined by means of the same ECP and basis set combined with the computational methods: MP2, M06, BP86, and its derivatives, so as B2PLYP, LC‐wPBE, and CCSD(T) (reference method). For reactions A ‐ I , B2PLYP provides the best agreement with CCSD(T) results. Additionally, B3LYP gave the smallest error for the energies of reactions J ‐ L . © 2017 Wiley Periodicals, Inc.  相似文献   
79.
The design of thermoelastic damping (TED) affected by the phase-lagging non-Fourier heat conduction effects becomes significant but challenging for enlarging the quality factor of widely-used microresonators operating in extreme situations, including ultra-high excitation frequency and ultra-low working temperature. However, there does not exist a rational method for designing the TED in the framework of non-Fourier heat conduction law. This work, therefore, proposes a design framework to achieve low thermoelastic dissipation of microresonators governed by the phase-lagging heat conduction law. The equation of motion and the heat conduction equation for phase-lagging TED microresonators are derived first, and then the non-Fourier TED design problem is proposed. A topology optimization-based rational design method is used to resolve the design problem. What is more, a two-dimensional (2D) plain-strain-based finite element method (FEM) is developed as a solver for the topology optimization process. Based on the suggested rational design technique, numerical instances with various phase lags are investigated. The results show that the proposed design method can remarkably reduce the dissipation of microresonators by tailoring their substructures.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号