首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   21篇
  国内免费   14篇
化学   148篇
晶体学   6篇
力学   6篇
综合类   6篇
数学   62篇
物理学   412篇
  2025年   1篇
  2024年   3篇
  2023年   2篇
  2022年   11篇
  2021年   11篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   10篇
  2014年   25篇
  2013年   43篇
  2012年   25篇
  2011年   39篇
  2010年   31篇
  2009年   41篇
  2008年   51篇
  2007年   58篇
  2006年   29篇
  2005年   18篇
  2004年   14篇
  2003年   33篇
  2002年   27篇
  2001年   31篇
  2000年   20篇
  1999年   13篇
  1998年   15篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
排序方式: 共有640条查询结果,搜索用时 15 毫秒
401.
建立了涉水产品浸泡液中酚类物质的柱头大体积进样(OCI-LVI)、串联毛细管柱分离、气相色谱-质谱联用(GC-MS)定性与定量检测方法.样品按相关法规浸泡后,以0.2 g/L的比例立即加入还原剂Na2S2O3,以消除过量余氯.取10 mL浸泡液,加入2,4-二溴酚内标物质.调pH 6.8,Nacl饱和后加1 mL提取溶...  相似文献   
402.
Recent studies in the human visual cortex using diffusion-weighted functional magnetic resonance imaging (fMRI) have suggested that the apparent diffusion coefficient (ADC) decreases, in contrast to earlier studies that consistently reported ADC increases during neuronal activation. The changes, in either case, are hypothesized to provide the ability to improve the spatial specificity of fMRI over conventional blood-oxygenation-level-dependent (BOLD) methods. Most recently, the ADC decreases have been suggested as originating from transient cell swelling caused by either shrinkage of the extracellular space or some intracellular neuronal process that precedes the hemodynamic response. All of these studies have been conducted in humans and at lower magnetic fields, which can be limited by the signal-to-noise ratio (SNR). The low SNR can lead to significant partial-volume effects because of the lower spatial resolutions required to attain sufficient SNR in diffusion-weighted images. Human studies also have the potential confound of motion. At high magnetic fields and in animal model studies, these limitations are alleviated. At high fields, SNR increases, tissue signals are enhanced and signal changes inside the blood are significantly reduced compared to lower fields. In this work, we were able to measure a small but significant ADC decrease in tissue areas, in conjunction with brain activation in the cat visual cortex at 9.4 T when using highly diffusion-weighted images (b>1200 s/mm2) where intravascular effects are minimal. When using low b-values, delayed increases in the tissue ADC during activation were observed. No significant changes in ADC were observed in surface vessels for any diffusion weighting. Furthermore, we did not observe any temporal differences in the highly diffusion-weighted data compared to BOLD; however, although the changes may likely be vascular in nature, they are highly localized to the tissue areas.  相似文献   
403.
We show how to compute the optical functions (reflectivity, transmission, and absorption) of polydiacetylene chains diluted in their monomer matrix exposed to a uniform electric field in the chain direction, in the excitonic energy region. Adopting a model electron-hole potential, we derived an analytical expression for the effective chain susceptibility, which gives the optical functions. The resulting absorption shows excitonic peaks below the gap and Franz-Keldysh oscillations above the gap. The method has been applied for a 3BCMU polydiacetylene chain, showing a good agreement with experimental spectra. Received 5 November 1998 and Received in final form 23 February 1999  相似文献   
404.
Resting-state functional magnetic resonance imaging (RS-fMRI) is a technique used to investigate the spontaneous correlations of blood-oxygen-level-dependent signals across different regions of the brain. Using functional connectivity tools, it is possible to investigate a specific RS-fMRI network, referred to as "default-mode" (DM) network, that involves cortical regions deactivated in fMRI experiments with cognitive tasks. Previous works have reported a significant effect of aging on DM regions activity. Independent component analysis (ICA) is often used for generating spatially distributed DM functional connectivity patterns from RS-fMRI data without the need for a reference region. This aspect and the relatively easy setup of an RS-fMRI experiment even in clinical trials have boosted the combined use of RS-fMRI and ICA-based DM analysis for noninvasive research of brain disorders. In this work, we considered different strategies for combining ICA results from individual-level and population-level analyses and used them to evaluate and predict the effect of aging on the DM component. Using RS-fMRI data from 20 normal subjects and a previously developed group-level ICA methodology, we generated group DM maps and showed that the overall ICA-DM connectivity is negatively correlated with age. A negative correlation of the ICA voxel weights with age existed in all DM regions at a variable degree. As an alternative approach, we generated a distributed DM spatial template and evaluated the correlation of each individual DM component fit to this template with age. Using a "leave-one-out" procedure, we discuss the importance of removing the bias from the DM template-generation process.  相似文献   
405.
Quantitative mapping of the effective transverse relaxation time, T2* and proton density was performed in a motor activation functional MRI (fMRI) study using multi-echo, echo planar imaging (EPI) and NumART2* (Numerical Algorithm for Real time T2*). Comparisons between NumART2* and conventional single echo EPI with an echo time of 64 ms were performed for five healthy participants examined twice. Simulations were also performed to address specific issues associated with the two techniques, such as echo time-dependent signal variation. While the single echo contrast varied with the baseline T2* value, relative changes in T2* remained unaffected. Statistical analysis of the T2* maps yielded fMRI activation patterns with an improved statistical detection relative to conventional EPI but with less activated voxels, suggesting that NumART2* has superior spatial specificity. Two effects, inflow and dephasing, that may explain this finding were investigated. Particularly, a statistically significant increase in proton density was found in a brain area that was detected as activated by conventional EPI but not by NumART2* while no such changes were observed in brain areas that showed stimulus correlated signal changes on T2* maps.  相似文献   
406.
Salim Lahmiri 《Physics letters. A》2018,382(34):2326-2333
The purpose of the current work is to study nonlinear dynamics in neuronal activity within human brain visual cortex based on blood-oxygen-level dependent (BOLD) contrast imaging. In particular, based on functional magnetic resonance imaging (fMRI) signals, measures of fractality, complexity, and state disorder are estimated from central and peripheral eccentricity bands across three visual areas. Statistical results from analysis of 48750 resting-state fMRI signals show evidence that nonlinear dynamics of neuronal activity in resting-state in central and peripheral eccentricity bands of human visual cortex are persistent. However, they exhibit heterogeneous variability across eccentricity bands and visual areas. Also, information content in first visual area is more ordered than in the second one, whilst information content in the third visual area is the least ordered. These interesting nonlinear statistical properties are a further step toward understanding neuronal activity and nonlinear dynamics in human brain visual cortex.  相似文献   
407.
The spontaneous emission of an excited atom is analyzed by quantum stochastic trajectory approach without both rotating-wave approximation and Markovian approximation. The atom finite size effect is also taken into account. We show by an example that the correction due to the counter-rotating wave term is rather small, even for the largest atomic number of real nuclei. Received 10 July 2002 / Received in final form 12 November 2002 Published online 4 February 2003  相似文献   
408.
We present a detailed experimental study of the evaluation of the van der Waals (vW) atom-surface interaction for high-lying excited states of alkali-metal atoms (Cs and Rb), notably when they couple resonantly with a surface-polariton mode of the neighbouring dielectric surface. This report extends our initial observation [Phys. Rev. Lett. 83, 5467 (1999)] of a vW repulsion between Cs(6D3/2) and a sapphire surface. The experiment is based upon FM selective reflection spectroscopy, on a transition reaching a high-lying state from a resonance level, that has been thermally pumped by an initial one-photon step. Along with a strong vW repulsion fitted with a blue lineshift, -160±25 kHz μm3 for Cs(6D3/2) in front of a sapphire surface (with a perpendicular c-axis), we demonstrate a weaker vW repulsion (-32±5 kHz μm3) for Cs(6D3/2) in front of a YAG surface, as due to a similar resonant coupling at 12 μm between a virtual atomic emission (6D3/2-7P1/2) and the surface polariton modes. A resonant behaviour of Rb(6D5/2) in front of a sapphire surface exists also because of analogous decay channels in the 12 μm range. Finally, one demonstrates that fused silica, nonresonant for a virtual transition in the 12 μm range and hence weakly attracting for Cs(6D3/2), exhibits a resonant behaviour for Cs(9S1/2) as due to its surface polariton resonance in the 8-9 μm range. The limiting factors that affect both the accuracy of the theoretical prediction, and that of the fitting method applied to the experimental data, are discussed in the conclusion. Received 16 January 2003 / Received in final form 25 March 2003 Published online 5 May 2003  相似文献   
409.
Magnetic exchange coupling has been observed for ultrathin films of yttrium iron garnet (Y3Fe5O12 or YIG). Single-crystalline YIG films were prepared on yttrium aluminium garnet (Y3Al5O12 or YAG) substrates by pulsed laser deposition. (111) and (110) oriented substrates were used. Film thicknesses were varied from 180 ? to 4600 ?. Epitaxial growth of YIG on YAG was obtained in spite of the lattice mismatch of 3%. Magnetic hysteresis loops recorded for ultrathin YIG films have a “bee-waist” shape and show a coupling between two different magnetic phases. The first phase is magnetically soft YIG. A composition study by secondary ion mass spectroscopy shows the second phase to be Y3Fe5-xAlxO12 due to the interdiffusion of Fe and Al at the film/substrate interface. This compound is known to be magnetically harder and to have weaker magnetization than YIG. The coupling of the two phases leads to a hysteresis loop displacement at low temperatures. This displacement varies differently with film thickness for two substrate orientations. Assuming an interfacial coupling, the maximal interaction energy is estimated to be about 0.17 erg/cm2 at 5 K for (111) oriented sample. Received 3 June 2002 / Received in final form 7 October 2002 Published online 27 January 2003 RID="a" ID="a"Presently at LPM, Université H. Poincaré, BP 239, 54506 Vandœuvre-lès-Nancy e-mail: popova@lpm.u-nancy.fr  相似文献   
410.
The recent synthesis of random schwarzites has stimulated the present ab initio calculation of the electronic structure and electron-phonon interaction in two different periodic D-type schwarzites, fcc-(C28)2 (made of 24 seven-membered rings per unit cell) and fcc-(C64)2 (made of 12 eight membered and 48 six-membered rings per unit cell). Like in fullerenes, also in schwarzites the electron-phonon interaction potential is found to increase with the absolute Gauss curvature, though it remains smaller than for doped fullerenes. Received 19 December 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: marco.bernasconi@unimib.it  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号