首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   79篇
  国内免费   17篇
化学   36篇
晶体学   3篇
力学   95篇
综合类   7篇
数学   672篇
物理学   212篇
  2024年   9篇
  2023年   22篇
  2022年   21篇
  2021年   23篇
  2020年   33篇
  2019年   31篇
  2018年   32篇
  2017年   31篇
  2016年   34篇
  2015年   32篇
  2014年   47篇
  2013年   91篇
  2012年   57篇
  2011年   49篇
  2010年   37篇
  2009年   61篇
  2008年   40篇
  2007年   50篇
  2006年   55篇
  2005年   46篇
  2004年   34篇
  2003年   34篇
  2002年   27篇
  2001年   14篇
  2000年   21篇
  1999年   22篇
  1998年   18篇
  1997年   12篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1977年   1篇
排序方式: 共有1025条查询结果,搜索用时 15 毫秒
41.
Penalty methods form a well known technique to embed elliptic variational inequality problems into a family of variational equations (cf. [6], [13], [17]). Using the specific inverse monotonicity properties of these problems L -bounds for the convergence can be derived by means of comparison solutions. Lagrange duality is applied to estimate parameters involved.

For piecewise linear finite elements applied on weakly acute triangulations in combination with mass lumping the inverse monotonicity of the obstacle problems can be transferred to its discretization. This forms the base of similar error estimations in the maximum norm for the penalty method applied to the discrete problem.

The technique of comparison solutions combined with the uniform boundedness of the Lagrange multipliers leads to decoupled convergence estimations with respect to the discretization and penalization parameters.  相似文献   
42.
We describe a primal–dual application of the proximal point algorithm to nonconvex minimization problems. Motivated by the work of Spingarn and more recently by the work of Hamdi et al. about the primal resource-directive decomposition scheme to solve nonlinear separable problems. This paper discusses some local results of a primal–dual regularization approach that leads to a decomposition algorithm.  相似文献   
43.
The quasi-reversibility method is considered for the non-homogeneous backward Cauchy problem ut+Au = f(t), u(τ) = ? for 0≤t<τ, which is known to be an ill-posed problem. Here, A is a densely defined positive self-adjoint unbounded operator on a Hilbert space H with given data fL1([0,τ],H) and ?H. Error analysis is considered when the data ?, f are exact and also when they are noisy. The results obtained generalize and simplify many of the results available in the literature.  相似文献   
44.
基于混沌粒子群算法的Tikhonov正则化参数选取   总被引:2,自引:0,他引:2  
余瑞艳 《数学研究》2011,44(1):101-106
Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.  相似文献   
45.
龚定东 《数学研究》2010,43(1):79-83
利用复双球面上的立体角系数的方法和置换公式,讨论复双球垒域上变系数奇异积分方程的正则化问题,推广了复超球面上变系数奇异积分方程的结论.  相似文献   
46.
A stochastic model for risk management in global supply chain networks   总被引:1,自引:0,他引:1  
With the increasing emphasis on supply chain vulnerabilities, effective mathematical tools for analyzing and understanding appropriate supply chain risk management are now attracting much attention. This paper presents a stochastic model of the multi-stage global supply chain network problem, incorporating a set of related risks, namely, supply, demand, exchange, and disruption. We provide a new solution methodology using the Moreau–Yosida regularization, and design an algorithm for treating the multi-stage global supply chain network problem with profit maximization and risk minimization objectives.  相似文献   
47.
Learning function relations or understanding structures of data lying in manifolds embedded in huge dimensional Euclidean spaces is an important topic in learning theory. In this paper we study the approximation and learning by Gaussians of functions defined on a d-dimensional connected compact C Riemannian submanifold of which is isometrically embedded. We show that the convolution with the Gaussian kernel with variance σ provides the uniform approximation order of O(σ s ) when the approximated function is Lipschitz s ∈(0, 1]. The uniform normal neighborhoods of a compact Riemannian manifold play a central role in deriving the approximation order. This approximation result is used to investigate the regression learning algorithm generated by the multi-kernel least square regularization scheme associated with Gaussian kernels with flexible variances. When the regression function is Lipschitz s, our learning rate is (log2 m)/m) s/(8 s + 4 d) where m is the sample size. When the manifold dimension d is smaller than the dimension n of the underlying Euclidean space, this rate is much faster compared with those in the literature. By comparing approximation orders, we also show the essential difference between approximation schemes with flexible variances and those with a single variance. Supported partially by the Research Grants Council of Hong Kong [Project No. CityU 103405], City University of Hong Kong [Project No. 7001983], National Science Fund for Distinguished Young Scholars of China [Project No. 10529101], and National Basic Research Program of China [Project No. 973-2006CB303102].  相似文献   
48.
An inverse problem of the reconstruction of the right-hand side of the Euler-Darboux equation is studied. This problem is equivalent to the Volterra integral equation of the third kind with the operator of multiplication by a smooth nonincreasing function. Numerical solution of this problem is constructed using an integral representation of the solution of the inverse problem, the regularization method, and the method of quadratures. The convergence and stability of the numerical method is proved.  相似文献   
49.
This paper presents an error analysis for classification algorithms generated by regularization schemes with polynomial kernels. Explicit convergence rates are provided for support vector machine (SVM) soft margin classifiers. The misclassification error can be estimated by the sum of sample error and regularization error. The main difficulty for studying algorithms with polynomial kernels is the regularization error which involves deeply the degrees of the kernel polynomials. Here we overcome this difficulty by bounding the reproducing kernel Hilbert space norm of Durrmeyer operators, and estimating the rate of approximation by Durrmeyer operators in a weighted L1 space (the weight is a probability distribution). Our study shows that the regularization parameter should decrease exponentially fast with the sample size, which is a special feature of polynomial kernels. Dedicated to Charlie Micchelli on the occasion of his 60th birthday Mathematics subject classifications (2000) 68T05, 62J02. Ding-Xuan Zhou: The first author is supported partially by the Research Grants Council of Hong Kong (Project No. CityU 103704).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号