首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15669篇
  免费   1387篇
  国内免费   707篇
化学   15591篇
晶体学   330篇
力学   21篇
综合类   11篇
数学   5篇
物理学   1805篇
  2024年   17篇
  2023年   160篇
  2022年   555篇
  2021年   486篇
  2020年   491篇
  2019年   362篇
  2018年   297篇
  2017年   273篇
  2016年   555篇
  2015年   555篇
  2014年   590篇
  2013年   1164篇
  2012年   730篇
  2011年   670篇
  2010年   759篇
  2009年   756篇
  2008年   776篇
  2007年   805篇
  2006年   771篇
  2005年   711篇
  2004年   768篇
  2003年   681篇
  2002年   1415篇
  2001年   374篇
  2000年   323篇
  1999年   316篇
  1998年   295篇
  1997年   217篇
  1996年   421篇
  1995年   406篇
  1994年   146篇
  1993年   118篇
  1992年   129篇
  1991年   86篇
  1990年   52篇
  1989年   72篇
  1988年   68篇
  1987年   40篇
  1986年   40篇
  1985年   55篇
  1984年   40篇
  1983年   24篇
  1982年   21篇
  1981年   20篇
  1980年   14篇
  1979年   10篇
  1978年   15篇
  1975年   7篇
  1971年   48篇
  1970年   25篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
991.
Carbonyl‐tethered propargylic benzoates undergo intramolecular carbonylpropargylation upon treatment with Et2Zn in the presence of a catalytic amount of Pd0 with the formation of 2‐alkynylcyclopentanol products. A ligand/solvent effect on the cis/trans selectivity (referring to the relative positions of alkynyl and OH groups) of ring‐closure has been found. In a non‐coordinating solvent (benzene), increasing the electron‐donating ability of the phosphine ligand (while decreasing its dissociation ability) leads to an increased tendency towards the trans product. On the other hand, the combination of a coordinating solvent (THF) and PPh3, an easily dissociated phosphine, results in the exclusive formation of cis products. Experimental and computational results are compatible with a divergent behavior of an allenylethylpalladium intermediate that partitions between competitive carbonyl‐addition and transmetalation pathways, each leading to a different diastereoisomer. These results also suggest that the dissociating ability of the phosphine regulates that behavior.  相似文献   
992.
993.
The preparation of dinuclear rhodium clusters and their use as catalysts is challenging because these clusters are unstable, evolving readily into species with higher nuclearities. We now present a novel synthetic route to generate rhodium dimers on the surface of MgO by a stoichiometrically simple surface‐mediated reaction involving [Rh(C2H4)2] species and H2. X‐ray absorption and IR spectra were used to characterize the changes in the nuclearity of the essentially molecular surface species as they formed, including the ligands on the rhodium and the metal‐support interactions. The support plays a key role in stabilizing the dinuclear rhodium species, allowing the incorporation of small ligands (ethyl, hydride, and/or CO) and enabling a characterization of the catalytic performance of the supported species for the hydrogenation of ethylene as a function of the metal nuclearity and ligand environment. A change in the nuclearity from one to two Rh atoms leads to a 58‐fold increase in the catalytic activity for ethylene hydrogenation, a reaction involving unsaturated, but stable, dimeric rhodium species.  相似文献   
994.
Two new “butterfly‐shaped” pentanuclear dysprosium(III) clusters, [Dy53‐OH)3(opch)6(H2O)3] ? 3 MeOH ? 9 H2O ( 1 ) and [Dy53‐OH)3(Hopch)2(opch)4(MeOH)(H2O)2] ? (ClO4)2 ? 6 MeOH ? 4 H2O ( 2 ), which were based on the heterodonor‐chelating ligand o‐vanillin pyrazine acylhydrazone (H2opch), have been successfully synthesized by applying different reaction conditions. Single‐crystal X‐ray diffraction analysis revealed that the butterfly‐shaped cores in both compounds were comparable. However, their magnetic properties were drastically different. Indeed, compound 1 showed dual slow‐relaxation processes with a transition between them that corresponded to energy gaps (Δ) of 8.1 and 37.9 K and pre‐exponential factors (τ0) of 1.7×10?5 and 9.7×10?8 s for the low‐ and high‐temperature domains, respectively, whilst only a single relaxation process was noted for compound 2 (Δ=197 K, τ0=3.2×10?9 s). These significant disparities are most likely due to the versatile coordination of the H2opch ligands with particular keto–enol tautomerism, which alters the strength of the local crystal field and, hence, the nature or direction of the easy axes of anisotropic dysprosium ions.  相似文献   
995.
996.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   
997.
A new tetranuclear magnesium hydride cluster, [{ NN ‐(MgH)2}2], which was based on a N? N‐coupled bis‐β‐diketiminate ligand ( NN 2?), was obtained from the reaction of [{ NN ‐(MgnBu)2}2] with PhSiH3. Its crystal structure reveals an almost‐tetrahedral arrangement of Mg atoms and two different sets of hydride ions, which give rise to a coupling in the NMR spectrum (J=8.5 Hz). To shed light on the relationship between the cluster size and H2 release, the thermal decomposition of [{ NN ‐(MgH)2}2] and two closely related systems that were based on similar ligands, that is, an octanuclear magnesium hydride cluster and a dimeric magnesium hydride species, have been investigated in detail. A lowering of the H2‐desorption temperature with decreasing cluster size is observed, in line with previously reported theoretical predictions on (MgH2)n model systems. Deuterium‐labeling studies further demonstrate that the released H2 solely originates from the oxidative coupling of two hydride ligands and not from other hydrogen sources, such as the β‐diketiminate ligands. Analysis of the DFT‐computed electron density in [{ NN ‐(MgH)2}2] reveals a counterintuitive interaction between two formally closed‐shell H? ligands that are separated by 3.106 Å. This weak interaction could play an important role in H2 desorption. Although the molecular product after H2 release could not be characterized experimentally, DFT calculations on the proposed decomposition product, that is, the low‐valence tetranuclear Mg(I) cluster [( NN ‐Mg2)2], predict a structure with two almost‐parallel, localized Mg? Mg bonds. As in a previously reported β‐diketiminate MgI dimer, the Mg? Mg bond is not characterized by a bond critical point, but instead displays a local maximum of electron density midway between the atoms, that is, a non‐nuclear attractor (NNA). Interestingly, both of the NNAs in [( NN ‐Mg2)2] are connected through a bond path that suggests that there is bonding between all four MgI atoms.  相似文献   
998.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   
999.
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state.  相似文献   
1000.
Herein, we describe the preparation of patterned photoresponsive hydrogels by using a facile method. This polymer‐network hydrogel coating consists of N‐isopropylacrylamide (NIPAAM), cross‐linking agent tripropylene glycol diacrylate (TPGDA), and a new photochromic spiropyran monoacrylate. In a pre‐study, a linear NIPAAM copolymer (without TPGDA) that contained the spiropyran dye was synthesised, which showed relatively fast photoswitching behaviour. Subsequently, the photopolymerisation of a similar monomer mixture that included TPGDA afforded freestanding hydrogel polymer networks. The light‐induced isomerisation of protonated merocyanine into neutral spiropyran under slightly acidic conditions resulted in macroscopic changes in the hydrophilicity of the entire polymer film, that is, shrinkage of the hydrogel. The degree of shrinkage could be controlled by changing the chemical composition of the acrylate mixture. After these pre‐studies, a hydrogel film with spatially modulated cross‐link density was fabricated through polymerisation‐induced diffusion, by using a patterned photomask. The resulting smooth patterned hydrogel coating swelled in slightly acidic media and the swelling was higher in the regions with lower cross‐linking densities, thus yielding a corrugated surface. Upon exposure to visible light, the surface topography flattened again, thus showing that a hydrogel coating could be created, the topography of which could be controlled by light irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号