首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3935篇
  免费   288篇
  国内免费   121篇
化学   3392篇
晶体学   73篇
力学   19篇
综合类   9篇
数学   44篇
物理学   807篇
  2024年   10篇
  2023年   17篇
  2022年   28篇
  2021年   96篇
  2020年   201篇
  2019年   171篇
  2018年   91篇
  2017年   117篇
  2016年   235篇
  2015年   253篇
  2014年   283篇
  2013年   324篇
  2012年   282篇
  2011年   268篇
  2010年   274篇
  2009年   268篇
  2008年   277篇
  2007年   239篇
  2006年   233篇
  2005年   187篇
  2004年   185篇
  2003年   143篇
  2002年   40篇
  2001年   31篇
  2000年   26篇
  1999年   13篇
  1998年   6篇
  1997年   27篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有4344条查询结果,搜索用时 15 毫秒
11.
In this paper, we explore the use of nanostructures for a number of fascinating applications. These applications based on nanostructures include (1) optical sensors, (2) nanopixel printing, (3) improving the resolution of imaging techniques, and (4) lithography. In the sensing field, nanostructures are exploited for advanced sensor performance, namely, the label-free and enhanced sensitivity of (1) the surface plasmon resonance sensor and (2) the extraordinary optical transmission sensor and (3) the high sensitivity and selectivity of surface-enhanced Raman spectroscopy. In addition, research using nanostructures for visual applications was introduced for (1) harnessing nanostructures for full-color pixel printing and (2) exploiting metallic nanostructures to enhance the imaging resolution under diffraction limits based on the plasmonic effect. Finally, we introduce low cost, high accuracy, and fast lithographic methods based on the plasmonic effect by exploiting metallic nanostructures.  相似文献   
12.
    
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   
13.
Noble-metal aerogels (NMAs) have drawn increasing attention because of their self-supported conductive networks, high surface areas, and numerous optically/catalytically active sites, enabling their impressive performance in diverse fields. However, the fabrication methods suffer from tedious procedures, long preparation times, unavoidable impurities, and uncontrolled multiscale structures, discouraging their developments. By utilizing the self-healing properties of noble-metal aggregates, the freezing-promoted salting-out behavior, and the ice-templating effect, a freeze–thaw method is crafted that is capable of preparing various hierarchically structured noble-metal gels within one day without extra additives. In light of their cleanliness, the multi-scale structures, and combined catalytic/optical properties, the electrocatalytic and photoelectrocatalytic performance of NMAs are demonstrated, which surpasses that of commercial noble-metal catalysts.  相似文献   
14.
    
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   
15.
    
Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on-surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well-controlled ultrahigh-vacuum conditions. Here we report the on-surface synthesis of a polymer linked by cumulene-like bonds on a Au(111) surface via sequential thermally activated dehalogenative C−C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene-like pentagon–pentagon and heptagon–heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X-ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on-surface synthesis of cumulene-containing compounds, as well as protocols relevant to the stepwise fabrication of carbon–carbon bonds on surfaces.  相似文献   
16.
The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2/S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm−2. When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.  相似文献   
17.
    
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.  相似文献   
18.
    
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light-emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation-induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self-assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high-sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   
19.
    
Precise atomic structure of metal nanoclusters (NCs) is fundamental for elucidating the structure–property relationships and the inherent size-evolution principles. Reported here is the largest known FCC-based (FCC=face centered cubic) silver nanocluster, [Ag100(SC6H33,4F2)48(PPh3)8]: the first all-octahedral symmetric nesting Ag nanocluster with a four-layered Ag6@Ag38@Ag48S24@Ag8S24P8 structure, consistent symmetry elements, and a unique rhombicuboctahedral morphology distinct from theoretical predictions and previously reported FCC-based Ag clusters. DFT studies revealed extensive interlayer interactions and degenerate frontier orbitals. The FCC-based Russian nesting doll model constitutes a new platform for the study of the size-evolution principles of Ag NCs.  相似文献   
20.
    
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号