首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3138篇
  免费   626篇
  国内免费   154篇
化学   3315篇
晶体学   48篇
力学   15篇
综合类   6篇
数学   43篇
物理学   491篇
  2024年   2篇
  2023年   11篇
  2022年   20篇
  2021年   60篇
  2020年   146篇
  2019年   115篇
  2018年   69篇
  2017年   84篇
  2016年   197篇
  2015年   224篇
  2014年   246篇
  2013年   290篇
  2012年   268篇
  2011年   240篇
  2010年   265篇
  2009年   264篇
  2008年   273篇
  2007年   236篇
  2006年   233篇
  2005年   187篇
  2004年   184篇
  2003年   143篇
  2002年   39篇
  2001年   31篇
  2000年   26篇
  1999年   13篇
  1998年   6篇
  1997年   27篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有3918条查询结果,搜索用时 0 毫秒
1.
Silica@copper (SiO2@Cu) core–shell nanoparticles were synthesized and well characterized by XRD, TEM, AFM, XPS, UV/Vis, TGA–MS, and ICP–AES techniques. The synthesized SiO2@Cu core–shell nanoparticles were employed as catalysts for the conjugate addition of amines to α,β‐unsaturated compounds in water to obtain β‐amino carbonyl compounds in excellent yields in shorter reaction times. Furthermore, the catalyst works well for hetero‐Michael addition reactions of heteroatom nucleophiles such as thiols to α,β‐unsaturated compounds. As the reaction is performed in water, it allows for easy recycling of the catalyst with consistent activity.  相似文献   
2.
The present state of research on the production and modeling of nanostructures based on titanium carbide-a typical representative of an extensive class of carbides of d-and f-metals-is reviewed. Methods for the synthesis of various Ti-C nanostructures (molecular clusters, nanocrystallites, nanospheres, nanofibers, nanowires) are examined, and their morphology, atomic structure, and known physicochemical characteristics are described. Theoretical models of the atomic structure and properties of new types of nanostructures in the titanium-carbon system (endo-and exohedral titanofullerenes, “hybrid” structures based on carbon nanotubes, the so-called peapods, nanocables, and a number of others) and the prospects for their application as components of nanoceramics, hydrogen accumulators, materials for spintronics, etc. are discussed. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 1, pp. 1–23, January–February, 2007.  相似文献   
3.
C Dufour  K Dumesnil  P H Mangin 《Pramana》2006,67(1):173-190
Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.  相似文献   
4.
5.
6.
7.
We study theoretically a nonlinear response of the planar metal/dielectric nanostructures constituted from periodical array of ultra thin silver layers and the layers of Kerr-like nonlinear dielectric. We predict hysteresis-type dependences of the components of the tensor of effective dielectric permittivity on the field intensity allowing the change in material transmission properties from transparent to opaque and back at extremely low intensities of the light. It makes possible to control the light by light in all-optical nanoscale devices and circuits.  相似文献   
8.
The field of photonic crystals has, over the past few years, received dramatically increased attention. Photonic crystals are artificially engineered structures that exhibit a periodic variation in one, two, or three dimensions of the dielectric constant, with a period of the order of the pertinent light wavelength. Such structures in three dimensions should exhibit properties similar to solid-state electronic crystals, such as bandgaps, in other words wavelength regions where light cannot propagate in any direction. By introducing defects into the periodic arrangement, the photonic crystals exhibit properties analogous to those of solid-state crystals. The basic feature of a photonic bandgap was indeed experimentally demonstrated in the beginning of the 1990s, and sparked a large interest in, and in many ways revitalized, photonics research. There are several reasons for this attention. One is that photonic crystals, in their own right, offer a proliferation of challenging research tasks, involving a multitude of disciplines, such as electromagnetic theory, nanofabrication, semi-conductor technology, materials science, biotechnology, to name a few. Another reason is given by the somewhat more down-to-earth expectations that photonics crystals will create unique opportunities for novel devices and applications, and contribute to solving some of the issues that have plagued photonics such as large physical sizes, comparatively low functionality, and high costs. Herein, we will treat some basics of photonic crystal structures and discuss the state-of-the-art in fabrication as well give some examples of devices with unique properties, due to the use of photonic crystals. We will also point out some of the problems that still remain to be solved, and give a view on where photonic crystals currently stand.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号