首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6127篇
  免费   839篇
  国内免费   737篇
化学   4539篇
晶体学   147篇
力学   186篇
综合类   29篇
数学   101篇
物理学   2701篇
  2024年   17篇
  2023年   70篇
  2022年   189篇
  2021年   199篇
  2020年   230篇
  2019年   184篇
  2018年   203篇
  2017年   221篇
  2016年   277篇
  2015年   252篇
  2014年   290篇
  2013年   589篇
  2012年   362篇
  2011年   437篇
  2010年   282篇
  2009年   412篇
  2008年   396篇
  2007年   402篇
  2006年   337篇
  2005年   287篇
  2004年   302篇
  2003年   244篇
  2002年   265篇
  2001年   159篇
  2000年   161篇
  1999年   112篇
  1998年   117篇
  1997年   94篇
  1996年   104篇
  1995年   70篇
  1994年   82篇
  1993年   68篇
  1992年   46篇
  1991年   28篇
  1990年   24篇
  1989年   24篇
  1988年   26篇
  1987年   15篇
  1986年   17篇
  1985年   14篇
  1984年   17篇
  1983年   7篇
  1982年   14篇
  1981年   9篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   5篇
  1974年   4篇
排序方式: 共有7703条查询结果,搜索用时 15 毫秒
21.
Samples of La0.7Ca0.3Mn1−xGaxO3 with x=0, 0.025, 0.05 and 0.10 were prepared by standard solid-state reaction. They were first characterized chemically, including the microstructure. The magnetic properties and various transport properties, i.e. the electrical resistivity, magnetoresistivity (for a field below 8 T), thermoelectric power and thermal conductivity measured each time on the same sample, are reported. The markedly different behaviour of the x=0.1 sample from those with a smaller Ga content, is discussed. The dilution of the Mn3+/Mn4+ interactions with Ga doping considerably reduces the ferromagnetic double exchange interaction within the manganese lattice leading to a decrease of the Curie temperature. The polaron binding energy varies from 224 to 243 meV with increased Ga doping.  相似文献   
22.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
23.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
24.
The sulfonated poly(ether ether ketone sulfone) (SPEEKS)/heteropolyacid (HPA) composite membranes with different HPA content in SPEEKS copolymers matrix with different degree of sulfonation (DS) were investigated for high temperature proton exchange membrane fuel cells. Composite membranes were characterized by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR band shifts suggested that the sulfonic acid groups on the copolymer backbone strongly interact with HPA particles. SEM pictures showed that the HPA particles were uniformly distributed throughout the SPEEKS membranes matrix and particle sizes decreased with the increment of copolymers' DS. The holes were not found in SPEEKS‐4/HPA30 (consisting of 70% SPEEKS copolymers with DS = 0.8 and 30% HPA) composite membrane after composite membranes were treated with boiling water for 24 h. Thermal stabilities of the composite membranes were better than those of pure sulfonated copolymers membranes. Although the composite membranes possessed lower water uptake, it exhibited higher proton conductivity for SPEEKS‐4/HPA30 especially at high temperature (above 100 °C). Its proton conductivity linearly increased from 0.068 S/cm at 25 °C to 0.095 S/cm at 120 °C, which was higher than 0.06 S/cm of Nafion 117. In contrast, proton conductivity of pure SPEEKS‐4 membrane only increased from 0.062 S/cm at 25 °C to 0.078 S/cm at 80 °C. At 120 °C, proton conductivity decreased to poor 0.073 S/cm. The result indicated that composite membranes exhibited high proton conductivity at high temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1967–1978, 2006  相似文献   
25.
A series of sulfonated poly(aryl ether ether ketone ketone)s statistical copolymers with high molecular weights were synthesized via an aromatic nucleophilic substitution polymerization. The sulfonation content (SC), defined as the number of sulfonic acid groups contained in an average repeat unit, could be controlled by the feed ratios of monomers. Flexible and strong membranes in sodium sulfonate form could be prepared by the solution casting method, and readily transformed to their proton forms by treating them in 2 N sulfuric acid. The polymers showed high Tgs, which increased with an increase in SC. Membranes prepared from the present sulfonated poly(ether ether ketone ketone) copolymers containing the hexafluoroisopropylidene moiety (SPEEKK‐6F) and copolymers containing the pendant 3,5‐ditrifluoromethylphenyl moiety (SPEEKK‐6FP) had lower water uptakes and lower swelling ratios in comparison with previously prepared copolymers containing 6F units. All of the polymers possessed proton conductivities higher than 1 × 10?2 S/cm at room temperature, and proton conductivity values of several polymers were comparable to that of Nafion at high relative humidity. Their thermal stability, oxidative stability, and mechanical properties were also evaluated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2299–2310, 2006  相似文献   
26.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   
27.
Efficient vectorial processes such as the transduction of bioenergy and signals are characteristics that strikingly distinguish living systems from inanimate materials. Recent developments in biophysical and biochemical techniques have provided new information about the structure, dynamics and interaction of biomolecules involved in vectorial life processes at multiple length and temporal scales. This wealth of data makes it possible to carry out theoretical and computational studied of key mechanistic questions associated with complex life processes at an unprecedented level. Using two “vectorial biomolecular machines”, myosin and cytochrome c oxidase, as examples, we discuss the identification of interesting and biologically relevant questions that require thorough theoretical analysis. Technical challenges and recent progress related to these theoretical investigations are briefly summarized  相似文献   
28.
The performance of high power transistor devices is intimately connected to the substrate thermal conductivity. In this study, the relationship between thermal conductivity and dislocation density is examined using the 3 omega technique and free standing HVPE GaN substrates. Dislocation density is measured using imaging cathodoluminescence. In a low dislocation density regime below 105 cm−2, the thermal conductivity appears to plateau out near 230 W/K m and can be altered by the presence of isotopic defects and point defects. For high dislocation densities the thermal conductivity is severely degraded due to phonon scattering from dislocations. These results are applied to the design of homoepitaxially and heteroepitaxially grown HEMT devices and the efficiency of heat extraction and the influence of lateral heat spreading on device performance are compared.  相似文献   
29.
In comparison with direct measurements of unsaturated hydraulic conductivity, the methods of calculations from the moisture retention curve are attractive for their fast and simple use and low cost. These are the main reasons for their increasing use, mainly in spatial variability studies. On the other hand, it is known that their applicability is limited. The possibility of the use of the retention curve to indirectly determine hydraulic conductivities is analyzed as follows. The theoretical derivation of the relationK(h) – (h) is briefly discussed with regards to potential sources of inaccuracy. The sensitivity of the algorithm forK(h) calculation is studied as a response to possible inaccuracies in the retention curve determination. Conclusions about the usability of calculated hydraulic conductivities are drawn.  相似文献   
30.
The limiting molar conductances ° of deuterium chloride DCl in D2O were determined as a function of pressure and temperature in order to examine the proton-jump mechanism in detail. The excess deuteron conductances °E(D +), as estimated by the equation [°E(D +) = °(DCl/D 2 O) – °(KCl/D 2 O)], increases with an increase in the pressure and temperature as well as the excess proton conductance [°E(H +) = °(HCl/H 2 O) – °(KCl/H 2 O)]. The isotope effect on the excess conductances, however, depends on the pressure and temperature contrary to the model proposed by Conway et al.: °E(H +)/°E(D +) decreases with increasing pressure and temperature. The magnitude of the decrease with pressure becomes more prominent at lower temperature. These results are discussed in terms of the pre-rotation of adjacent water molecules, the bending of hydrogen bonds with pressure, and the difference in strength of hydrogen bonds between D2O and H2O.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号