首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26687篇
  免费   4591篇
  国内免费   2652篇
化学   13417篇
晶体学   201篇
力学   1530篇
综合类   355篇
数学   7414篇
物理学   11013篇
  2024年   63篇
  2023年   290篇
  2022年   679篇
  2021年   763篇
  2020年   870篇
  2019年   811篇
  2018年   725篇
  2017年   875篇
  2016年   1254篇
  2015年   1163篇
  2014年   1604篇
  2013年   2317篇
  2012年   1666篇
  2011年   1822篇
  2010年   1581篇
  2009年   1685篇
  2008年   1849篇
  2007年   1895篇
  2006年   1590篇
  2005年   1461篇
  2004年   1211篇
  2003年   1095篇
  2002年   870篇
  2001年   667篇
  2000年   685篇
  1999年   610篇
  1998年   555篇
  1997年   458篇
  1996年   333篇
  1995年   328篇
  1994年   305篇
  1993年   214篇
  1992年   200篇
  1991年   157篇
  1990年   131篇
  1989年   135篇
  1988年   136篇
  1987年   113篇
  1986年   84篇
  1985年   131篇
  1984年   85篇
  1983年   53篇
  1982年   74篇
  1981年   51篇
  1980年   43篇
  1979年   48篇
  1978年   49篇
  1977年   35篇
  1976年   29篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A thorough study of the polymerization behavior of 4‐fluoro‐4′‐hydroxytriphenyl‐phosphine oxide, 2 , under nucleophilic aromatic substitution reactions has been carried out. The synthesis of 2 was achieved in excellent yields by the reaction of bis(4‐fluorophenyl)phenylphosphine oxide, 1 , with one equivalent of potassium hydroxide in DMSO/water. The structure and purity of 2 were confirmed via 1H, 13C, and 31P NMR spectroscopy along with elemental analysis. Polymerization reactions of 2 in NMP or DMSO at 180 °C provided the corresponding linear poly(arylene ether phosphine oxide)s, PAEPOs, with number average molecular weights, Mn, ranging from 11,700 to 36,500 Da. All of the polymer samples were completely soluble in chloroform, tetrahydrofuran, DMSO, NMP, and DMAc. The polymerization reactions were accompanied by a competing intramolecular process that resulted in the formation of cyclic oligomeric species that were removed via a final precipitation from methanol. Analysis using 31P NMR spectroscopy and size exclusion chromatography (SEC) confirmed that the majority of the lower molecular weight cyclic species were removed via this process. The polymer samples formed tough films when chloroform solutions were slowly evaporated on a glass slide. The PAEPO samples prepared in this study exhibited excellent thermal stability with Td (5%) values between 503 and 542 in air while the glass transition temperatures ranged from 223 to 237 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2099–2106, 2006  相似文献   
22.
A spiro orthoester with an exomethylene group (exoSOE) was radically copolymerized with acrylonitrile or vinyl acetate at several feed ratios to obtain the corresponding copolymers having spiro orthoester moieties in the side chain. The obtained copolymers could be crosslinked via the double ring‐opening polymerization of the spiro orthoester moieties in their side chain by a treatment with BF3OEt2. The volume changes upon the crosslinking of the copolymers were evaluated by density measurements with a micromeritics gas pycnometer. The copolymers experienced less than 1% volume expansion instead of volume shrinkage during typical cationic crosslinking, regardless of the copolymer compositions. Negligible shrinkage was observed during the thermal cationic crosslinking of a film cast from a nitrobenzene solution of the copolymers containing a benzylthiophenium salt as a thermally latent cationic initiator. The constantly low volume changes during the crosslinking of the copolymers from exoSOE probably depended on the almost zero volume change during the cationic polymerizations of spiro orthoester derivatives. This indicates that exoSOE is an effective monomer for crosslinkable polymers without volume changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3666–3673, 2006  相似文献   
23.
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006  相似文献   
24.
Spiro orthocarbonate (SOC) monomers having either an exomethylene group {3,3‐dimethyl‐9‐methylene‐1,5,7,11‐tetraoxaspiro[5.5]undecane (ExoSOC)} or an allyl group {9‐allyl‐3,3‐dimethyl‐1,5,7,11‐tetraoxaspiro[5.5]undecane (AllylSOC)} were radically copolymerized with vinyl monomers at several feed ratios to obtain the corresponding copolymers having SOC moieties in the side chain. The obtained copolymers were crosslinked via the double ring‐opening polymerization of the SOC moieties by a treatment with boron trifluoride etherate. The volume changes during the crosslinking of the copolymers were evaluated by density measurements with a gas pycnometer. As the SOC moiety composition increased, the volume shrinkage during the crosslinking was suppressed, and that finally changed into volume expansion. The volume changes during the crosslinking of the copolymers from AllylSOC were slightly larger than those of the copolymers from ExoSOC. The higher volume expansions in the crosslinking of AllylSOC‐based copolymers were ascribable to the lower steric hindrance around the SOC moieties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7040–7053, 2006  相似文献   
25.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   
26.
Four polyethylene samples (PE) with different molecular weight distributions (MWD) were analyzed by crystallization analysis fractionation (Crystaf) at several cooling rates to investigate the effect of MWD and cooling rate on their Crystaf profiles. Using these results, we developed a mathematical model for Crystaf that considers crystallization kinetic effects, which are ignored in all previous Crystaf models. The Crystaf model we proposed can fit the experimental Crystaf profiles of the 4 polyethylene resins very well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2749–2759, 2006  相似文献   
27.
The polypyrrole/p‐InP structure has been fabricated by the electrochemical polymerization of the organic polypyrrole onto the p‐InP substrate. The current–voltage (I–V), capacitance–voltage (C–V), and capacitance–frequency (C–f) characteristics of the PPy/p‐InP structure have been determined at room temperature. The structure showed nonideal I–V behavior with the ideality factor and the barrier height 1.48 and 0.69 eV respectively. C–f measurements of the structure have been carried out using the Schottky capacitance spectroscopy technique and it has been seen that there is a good agreement between the experimental and theoretical values. Also, it has been seen that capacitance almost show a plateau up to a certain value of frequency, after which, the capacitance decreases. The higher values of capacitance at low frequencies were attributed to the excess capacitance resulting from the interface states in equilibrium with the p‐InP that can follow the a.c. signal. The interface state density Nss and relaxation time τ of the structure were determined from C–f characteristics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1572–1579, 2006  相似文献   
28.
The freezing temperatures and densities (at 31°C) of solutions of octane, nonane, decane, 3,3-diethylpentane, and sodium oleate inN-methylacetamide (NMA) have been measured. The molality of the freezing solution was calculated from the density. The solubilities of octane, nonane, and decane inN-methylacetamide are also reported. Apparent molal volumes calculated from the densities are close to the values in the pure hydrocarbons and are not strong functions of the concentration. This indicates the absence of any unusual packing effect. The calculated free energies of transfer of the hydrocarbons from pure hydrocarbon to NMA solution are much less negative than the corresponding values for water, showing that the bulk solvophobic interaction inN-methylacetamide is smaller than in water. This is consistent with the freezing temperatures of sodium oleate which show that micelles do not form below 0.1 mole-kg–1. The osmotic coefficients of the hydrocarbons calculated from the freezing temperatures showed negative deviations from ideality that were larger for the hydrocarbons with the higher molecular weights. Two estimates of the pairwise solvophobic interaction inN-methylacetamide indicate that it is also smaller than in water. The solvophobic effect in this solvent does not include the large entropy and enthalpy effects found in aqueous solutions.  相似文献   
29.
The distribution of the unpaired electron over the oxygen and the 24 carbon atoms in the free 2,4,6-triphenylphenoxy radical was determined by electron spin resonance spectroscopy and quantum-mechanical approximation methods. The hyperfine splitting was evaluated with the aid of the spectra of triphenylphenoxyls deuterated in some or all of the substituent phenyl groups. The results of the quantum-mechanical approximations were checked by recording the ESR spectra of triphenylphenoxyls labeled with 13C in positions 1,2,3, or 4 of the central ring. The spin density distribution permits a first discussion of the 17O-coupling constants of correspondingly labeled triphenylphenoxyl and other organic free radicals.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号