首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   64篇
  国内免费   38篇
化学   269篇
晶体学   15篇
力学   142篇
综合类   4篇
数学   35篇
物理学   110篇
  2024年   3篇
  2023年   4篇
  2022年   10篇
  2021年   14篇
  2020年   29篇
  2019年   12篇
  2018年   9篇
  2017年   15篇
  2016年   20篇
  2015年   26篇
  2014年   22篇
  2013年   31篇
  2012年   23篇
  2011年   28篇
  2010年   31篇
  2009年   27篇
  2008年   30篇
  2007年   35篇
  2006年   16篇
  2005年   29篇
  2004年   19篇
  2003年   22篇
  2002年   15篇
  2001年   15篇
  2000年   14篇
  1999年   10篇
  1998年   12篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   11篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1957年   1篇
排序方式: 共有575条查询结果,搜索用时 15 毫秒
121.
The quantitative characterization of pore structure of Sartobind Q, a strongly basic membrane anion exchanger that is formed by cross-linked cellulose support and a hydrogel layer on its pore surface, was made combining the results obtained by several experimental techniques: liquid impregnation, batch size-exclusion, inverse size-exclusion chromatography, and permeability. Mercury intrusion and nitrogen sorption porosimetry were carried out for a dry cellulose support membrane in order to get additional information for building a model of the bimodal pore structure. The model incorporated the distribution of the total pore volume between transport and gel-layer pores and the partitioning of solutes of different molecular weights was expressed through the cylindrical pore model for the transport pores and random plane model for the gel layer. The effect of composition of liquid phase on the pore structure was investigated in redistilled water, phosphate and Tris–HCl buffers containing up to 1 M NaCl. Evident differences in the bimodal pore structure were observed here when both the specific volume and size of the hydrogel layer pores significantly decreased with the ionic strength of liquid phase.  相似文献   
122.
Currently, the existence of a gut–bone axis receives massive attention, and while sound premises and indirect proofs exist for the gut–bone axis concept, few studies have provided actual data linking the gut and bone physically. This study aimed to exploit the versatile nature of nuclear magnetic resonance (NMR) to link NMR relaxometry data on bone mineralization with NMR spectroscopic profiling of gut metabolites. For this purpose, sample material was obtained from a 6-week intervention study with ovariectomized (OVX) rats (n = 49) fed with seven different diets varying in calcium content (0.2–6.0 mg/kg) and prebiotic fiber content (0–5.0% w/w). This design ensured a span in (i) calcium available for bone mineralization and (ii) metabolic activity in the gut. After termination of the intervention, longitudinal (T1), transverse (T2) relaxation, and mechanical bone strength were measured on the excised femur bones. A PLS model with high predictability (Q2 = 0.86, R2 = 0.997) was demonstrated between T2 decay curves and femur mechanical strength. Correlations were established between bone T2 populations and gut short-chain fatty acids. In conclusion, the present dual NMR approach showed strong correlation between T2 relaxation and mechanical strength of the bone, and when metabolic activity in the gut was modulated by inulin, the potential existence of a gut–bone axis was demonstrated.  相似文献   
123.
ABSTRACT

Persistently doped conjugated polymers are integral for energy storage, flexible electronics, and biosensors due to their unique ability to interact with both ionic and electronic currents. To maximise the performance of devices across these fields, research has focused on controlling material properties to optimise conductivities of both types of charge carriers. The challenge lies in improving ionic transport, which is typically the rate-limiting step in redox processes, without sacrificing electronic conductivity or desirable mechanical properties. Here we report on control of nanostructure in vapour deposited conducting polymer films and correlate changes in film structure with resulting electrochemical properties. Structural control is enabled by exploiting the growth of oxidant nanoaggregates during the reactive vapour deposition process. Relative to dense films, porous films exhibit faster response times in electrochemical testing. Scan rate analysis confirms a transition away from diffusion-limited charging kinetics and demonstrates the important role that porosity can play in ion transport through electroactive polymers. Advantageously, continuous polymer networks remain evident in nanostructured films, ensuring that high electronic conductivities are maintained along with high porosity. We find that such enhanced properties are retained even as polymer thickness increases ten-fold. The films reported herein may serve as robust electrodes in flexible electrochemical devices.  相似文献   
124.
We report on a study wherein we investigate the different factors affecting the accuracy of the total pore blocking method to determine the interstitial volume of reversed-phase packed bed columns. Octane, nonane, decane and dodecane were all found to be suitable blocking agents, whereas heptane already dissolves too well in the applied fully aqueous buffers. The method of moments needs to be used to accurately determine the elution times, and a proper correction for the frit volume is needed. Failing to do so can lead to errors on the observed interstitial volume of the order of 2% or more. It has also been shown that the application of a high flow rate or a high pressure does not force the blocking agent out of the mesopores of the particles. The only potential source of loss of blocking agent is dissolution into the mobile phase (even though this is a buffered fully aqueous solution). This effect however only becomes significant after the elution of 400 geometrical column volumes, i.e., orders more than needed for a regular total pore blocking experiment.  相似文献   
125.
PorAS, a new approximate‐state Riemann solver, is proposed for hyperbolic systems of conservation laws with source terms and porosity. The use of porosity enables a simple representation of urban floodplains by taking into account the global reduction in the exchange sections and storage. The introduction of the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity and momentum equations. The solution is considered to be made of rarefaction waves and is determined using the Riemann invariants. To allow a direct computation of the flux through the computational cells interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the PorAS solver to the shallow water equations is presented and several computational examples are given for a comparison with the HLLC solver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
126.
127.
In this work, we study, from the numerical point of view, a type III thermoelastic model with double porosity. The thermomechanical problem is written as a linear system composed of hyperbolic partial differential equations for the displacements and the two porosities, and a parabolic partial differential equation for the thermal displacement. An existence and uniqueness result is recalled. Then, we perform its a priori error numerical analysis approximating the resulting variational problem by using the finite element method and the implicit Euler scheme. The linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the approximations and the dependence of the solution on a coupling coefficient.  相似文献   
128.
The structural theory of microdamage of homogeneous and composite materials is generalized. The theory is based on the equations and methods of the mechanics of microinhomogeneous bodies with stochastic structure. A single microdamage is modeled by a quasispherical pore empty or filled with particles of a damaged material. The accumulation of microdamages under increasing loading is modeled as increasing porosity. The damage within a single microvolume is governed by the Huber-Mises or Schleicher-Nadai failure criterion. The ultimate strength is assumed to be a random function of coordinates with power-law or Weibull one-point distribution. The stress-strain state and effective elastic properties of a composite with microdamaged components are determined using the stochastic equations of elasticity. The equations of deformation and microdamage and the porosity balance equation constitute a closed-form system of equations. The solution is found iteratively using conditional moments. The effect of temperature on the coupled processes of deformation and microdamage is taken into account. Algorithms for plotting the dependences of microdamage and macrostresses on macrostrains for composites of different structure are developed. The effect of temperature and strength of damaged material on the stress-strain and microdamage curves is examined __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 6, pp. 3–42, June 2007.  相似文献   
129.
In this study an attempt is made to link the damage and microstructural evolution of semicrystalline polymers, in particular polyamide 6, to the macroscopic material behavior during tensile and creep tests. Tensile specimens, removed before failure were seen to have undergone striction. They were examined using synchrotron radiation tomography. These samples showed elongated axisymmetric columns of voids separated by thin ligaments of material. These observations were confirmed and refined through a cryofractography experiment of a different tensile sample, stopped before failure. An attempt was made to obtain quantitative data about void volume fraction and morphology through image analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1516–1525, 2010  相似文献   
130.
A two‐step synthesis of a novel mesostructured silicate, KIL‐2, and its manganese‐containing analogue, Mn/KIL‐2, has been developed. KIL‐2 possesses interparticle mesopores with pore dimensions between 5 and 60 nm and a surface area of 448 m2. The mesopores are formed by the aggregation of silica nanoparticles, which creates a network with interparticle voids. The particle size and the pore diameters depend on the temperature of the ageing step (first step) and on the solvothermal treatment in ethanol (second step), respectively. Mn/KIL‐2 contains octahedrally coordinated Mn3+ (80 %) and tetrahedrally coordinated Mn2+ (20 %) ions. Mn3+ ions are present in the extra‐framework MnOx nanoparticles with typical dimensions of 2 nm, which are homogeneously distributed throughout the material. Mn2+ ions occur as isolated manganese framework sites. The material is also able to retain its structure characteristics after the hydrothermal treatment in boiling water. Because of its non‐toxic nature and cost‐effective synthesis, Mn/KIL‐2 thus exhibits properties that are needed for an environment‐friendly catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号