首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   404篇
  国内免费   54篇
化学   170篇
晶体学   63篇
力学   37篇
综合类   24篇
数学   15篇
物理学   825篇
  2024年   1篇
  2023年   8篇
  2022年   39篇
  2021年   21篇
  2020年   34篇
  2019年   23篇
  2018年   30篇
  2017年   34篇
  2016年   54篇
  2015年   29篇
  2014年   64篇
  2013年   73篇
  2012年   71篇
  2011年   87篇
  2010年   58篇
  2009年   65篇
  2008年   72篇
  2007年   64篇
  2006年   59篇
  2005年   38篇
  2004年   36篇
  2003年   40篇
  2002年   25篇
  2001年   17篇
  2000年   17篇
  1999年   9篇
  1998年   19篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有1134条查询结果,搜索用时 15 毫秒
31.
Characterization of the geometrical and structural characteristics of oxidized Cu area in high resolution is crucial for tracking the change in morphology, exploring interactions between graphene layers and Cu substrates and revealing the mechanism for the orientation-dependent oxidation of Cu. Here, we reported experimental results on nanoscale imaging of natural oxidation of the polycrystalline Cu substrate coated by partial-coverage chemical vapor deposition (CVD)-grown graphene stored in dryer under ambient conditions for up to 10 months. Scanning electron microscope (SEM), together with atomic force microscope (AFM), Raman, and X-ray photoelectron spectroscopy (XPS), was used for systematically studying the morphological and compositional changes at nanoscale during oxidation. The appearance of oxidized Cu substrates could be unambiguously distinguished from the unoxidized regions based on their distinctly different morphologies in SEM images, and the underlying mechanism was discussed in detail. By analyzing a millimeter-seized polycrystalline Cu substrate, we found that the oxidation of polycrystalline Cu substrate depends sensitively on both orientation of graphene layers and Cu substrates. Furthermore, the time-dependent oxidation evolution of Cu substrate was also established, and the oxidation rate was readily determined. The findings reported here will have important implications for developing protection coatings for Cu.  相似文献   
32.
The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall–Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.  相似文献   
33.
Using two versions of the first principles full potential linear muffin-tin orbitals method (FPLMTO) which enable an accurate treatment of the interstitial regions, the electronic and optical properties of (110) growth axis Si/SiGe superlattices are investigated. A comparative study with (001) growth axis superlattices is made. In particular, it is found that the bottom of the conduction band (CB) is closer to ΓΓ in the (110) system but the optical activity is not enhanced. Furthermore, the absorption spectra of the superlattices are calculated and are found to be quite different from those of bulk Si and Ge but fairly close to their average.  相似文献   
34.
In this work, an analytical model of gate-engineered junctionless surrounding gate MOSFET (JLSRG) has been proposed to uncover its potential benefit to suppress short-channel effects (SCEs). Analytical modelling of centre potential for gate-engineered JLSRG devices has been developed using parabolic approximation method. From the developed centre potential, the parameters like threshold voltage, surface potential, Electric Field, Drain-induced Barrier Lowering (DIBL) and subthershold swing are determined. A nice agreement between the results obtained from the model and TCAD simulation demonstrates the validity and correctness of the model. A comparative study of the efficacy to suppress SCEs for Dual-Material (DM) and Single-Material (SM) junctionless surrounding gate MOSFET of the same dimensions has also been carried out. Result indicates that TM-JLSRG devices offer a noticeable enhancement in the efficacy to suppress SCEs by as compared to SM-JLSRG and DM-JLSRG device structures. The effect of different length ratios of three channel regions related to three different gate materials of TM-JLSRG structure on the SCEs have also been discussed. As a result, we demonstrate that TM-JLSRG device can be considered as a competitive contender to the deep-submicron mainstream MOSFETs for low-power VLSI applications.  相似文献   
35.
ZIF‐7, built as an assembly of ZnII centers and benzimidazolate ligands, shows prominent S‐shaped isotherms upon CO2 adsorption that can be attributed to sorbate‐induced gate‐opening phenomena involving a narrow‐to‐large pore phase transition. This peculiar sorption pattern can be captured via the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic view of the gate‐opening process. Relying on such an approach, an energy barrier with preferential enthalpic nature for CO2 adsorption/desorption in the gate‐opening region could be unveiled. Moreover, the elastic energy involved during the gate‐opening process was revisited to 1.4–2.8 kJ mol?1 of solid in the temperature range 273–323 K, matching the value measured by isostatic compression of a ZIF‐7_lp sample filled with DMF and showing a dominant entropic contribution.  相似文献   
36.
The design of turn‐on dyes with optical signals sensitive to the formation of supramolecular structures provides fascinating and underexplored opportunities for G‐quadruplex (G4) DNA detection and characterization. Here, we show a new switching mechanism that relies on the recognition‐driven disaggregation (on‐signal) of an ultrabright coumarin‐quinazoline conjugate. The synthesized probe selectively lights‐up parallel G4 DNA structures via the disassembly of its supramolecular state, demonstrating outputs that are easily integrable into a label‐free molecular logic system. Finally, our molecule preferentially stains the G4‐rich nucleoli of cancer cells.  相似文献   
37.
In the fields of biocomputing and biomolecular, DNA molecules are applicable to be regarded as data of logical computing platform that uses elaborate logic gates to perform a variety of tasks. Graphene oxide (GO) is a type of novel nanomaterial, which brings new research focus to materials science and biosensors due to its special selectivity and excellent quenching ability. G-quadruplex as a unique DNA structure stimulates the intelligent application of DNA assembly on the strength of its exceptional binding activity. In this paper, we report a universal logic device assisted with GO and G-quadruplex under an enzyme-free condition. Integrated with the quenching ability of GO to the TAMRA (fluorophore, Carboxytetramethylrhodamine) and the enhancement of fluorescence intensity produced by the peculiar binding of G-quadruplex to the NMM (N-methylmesoporphyrin IX), a series of basic binary logic gates (AND. OR. INHIBIT. XOR) have been designed and verified through biological experiments. Given the modularity and programmability of this strategy, two advanced logic gates (half adder and half subtractor) were realized on the basis of the same work platform. The fluorescence signals generated from different input combinations possessed satisfactory results, which provided proof of feasibility. We believe that the proposed universal logical platform that operates at the nanoscale is expected to be utilized for future applications in molecular computing as well as disease diagnosis.  相似文献   
38.
张贵福  周劼  刘友江 《强激光与粒子束》2020,32(6):063006-1-063006-8
设计了一款全差分、20 GHz带宽主从式跟踪保持芯片(MS-THA)。该芯片采样率为2 G/s,工作带宽大于20 GHz,采用0.13μm SiGe BiCMOS工艺实现。该芯片采用传统的开关发射极跟随器(SEF)作为跟踪保持核心电路,Cherryhooper电路作为输入缓冲和输出缓冲的带宽增强核心电路,并利用交叉反馈电容抑制馈通。为了验证上述电路的有效性,设计了一个单级THA电路,测试结果为MS-THA电路提供了足够的支持。在单电源+3.3 V供电、输入直流电平为0 V,2 G/s采样率以及-3 dBm输入信号功率条件下,获得的单端输出无杂散动态范围小于-23.5 dB,总功耗约为300 mW。  相似文献   
39.
通过对线间电容耦合模型的研究, 提出了一种基于互连线电容耦合的SR锁存电路设计方案. 该方案首先分析互连线间电容耦合关系, 利用MOS管栅极电容模拟互连线电容; 然后利用电容耦合结构与线计算特性, 设计或非逻辑门电路, 在此基础上实现基于互连线电容耦合的SR锁存电路; 最后在TSMC 65nm Spectre环境下仿真验证. 结果表明 所设计的电路逻辑功能正 确, 且具有低硬件开销特性.  相似文献   
40.
《Physics letters. A》2020,384(1):126039
Different from the conventional Rydberg antiblockade (RAB) regime that either requires weak Rydberg-Rydberg interaction (RRI), or compensates the RRI-induced energy shift by introducing off-resonant interactions, we show that RAB regime can be achieved by resonantly driving the transitions between ground state and Rydberg state under strong RRI. The Rabi frequencies are of small amplitude and time-dependent harmonic oscillation, which plays a critical role for the presented RAB. The proposed unconventional RAB regime is used to construct high-fidelity controlled-Z (CZ) gate and controlled-not (CNOT) gate in one step. Each atom requires single external driving. And the atomic addressability is not required for the presented unconventional RAB, which would simplify experimental complexity and reduce resource consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号