首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   82篇
  国内免费   2篇
化学   5篇
综合类   1篇
物理学   192篇
  2023年   1篇
  2022年   7篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   13篇
  2016年   14篇
  2015年   10篇
  2014年   17篇
  2013年   18篇
  2012年   11篇
  2011年   23篇
  2010年   17篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有198条查询结果,搜索用时 93 毫秒
71.
This paper discusses the magneto-optic phase shift in garnet/semiconductor-on-insulator plasmonic waveguides. We consider two structures: (1) Y IG/Si/SiO2 and (2) Y IG/GaInAsP/AlInAs-oxide. A dispersion relation for the plasmon propagation has been derived and the nonreciprocal phase shift of the fundamental TM mode has been determined at wavelengths of 1.55 μm, 1.5 μm and 1.3 μm.  相似文献   
72.
We present a time resolved experiment in which we dynamically tailor the occupation and temperature of a photogenerated exciton distribution in QWs by excitation with two delayed picosecond pulses. The modification of the excitonic distribution results in ultrafast changes in the PL dynamics. Our experimental results are well accounted by a quasiequilibrium thermodynamical model, which includes the occupation and momentum distribution of the excitons. We use this model and the two-pulse experimental technique to study the polariton dynamics in InGaAs-based microcavities in the strong coupling regime. In particular, we demonstrate that resonantly injected upper polaritons mainly relax to the lower polariton branch via scattering to large momentum polariton states, producing the warming of the polariton reservoir.  相似文献   
73.
Time-resolved Kerr (Faraday) rotation experiments allow for the observation of polariton spin beats in both InGaAs and CdMnTe quantum well (QW) microcavities. The existence of these beats is an unambiguous manifestation of the coherent energy exchange between exciton and photon components of polariton states created by a circularly polarized and spectrally wide femtosecond laser pulse. The polariton states are also shown to be split into a linearly polarized doublet. This splitting is responsible for the polarization transfer between linearly and circularly polarized states. In a highest-quality sample, the resulting spin dynamics could be detected.  相似文献   
74.
薛文瑞  郭亚楠  张文梅 《中国物理 B》2010,19(1):17302-017302
In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamental mode supported by these surface plasmonic waveguide structures. Results show that the transverse magnetic field of the fundamental mode is mainly distributed in the face to face region formed by two rods. With the same geometrical parameters and the same working wavelength of 632.8~nm, in the case of rods with a triangular cross-section, the degree of localization of field is strong, i.e. the mode area is small, but the fraction of the modal power in the metal increases, so the effective index increases and the propagation length of the mode decreases. With the same geometrical parameters, relative to the case of a working wavelength of 632.8~nm, when working wavelength is large, the mode area of transverse magnetic field distribution is large, i.e. the degree of localization of field is weak, and the interaction of field and silver is weak too, then the effective index decreases, so the propagation length increases. The rounded radii of rods have a great influence on the performance of the surface plasmonic waveguides with rounded triangular cross-sections, but have little influence on the performance of surface plasmonic waveguides with rounded square cross-sections. Since the distribution of transverse magnetic field, effective index, propagation length and the mode area can be adjusted by the geometrical parameters, this kind of modified surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.  相似文献   
75.
为了提高长波量子阱红外探测器的灵敏度及探测率,采用表面等离激元效应来提高量子阱红外探测器中二维光栅的耦合效率。利用三维时域有限差分算法,分析表面等离激元作用下,长波量子阱红外探测器中二维金属薄膜光栅参数对入射光的调制作用。计算结果表明,对于8 m的入射光,当光栅周期P=2.8 m,孔直径D=1.4 m,光栅层厚度L=0.04 m时,X Y平面内Z方向电场值最大,光栅的耦合效率最高。  相似文献   
76.
The performance of superconducting nanowire single-photon detector (SNSPD) involving niobium nitride with the fan coupling antenna array is analyzed. The SNSPD has a high detection efficiency and counting rate. Hydrogen silsesquioxane and niobium nitride are filled in the gold grating deposited on the substrate in which the fan coupling antenna arrays are embedded. By changing the position of the fan coupling antenna array, the maximum area of optical intensity is obtained and the photon collection efficiency is increased by 26.5 times. The detection efficiency of SNSPD is improved without changing the detection speed. These parameters are important for designing a practical single-photon detector,  相似文献   
77.
陈建军  李智  龚旗煌 《中国物理 B》2009,18(8):3535-3541
Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness, are theoretically calculated and analyzed. Due to the high permittivity of the polymer film, at proper polymer film thicknesses, the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes, and the electromagnetic field above the metal can be localized well. It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thicknesses. Furthermore, the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.  相似文献   
78.
This paper describes a multi-reflected mode based on a narrow waveguide to enlarge the interferential area of surface plasmon polaritons (SPPs). A reasonable thickness of metal film is coated under the waveguide, the incident angle and the waveguide thickness are optimized in order to effectively increase interferential area. This is a key point for research into the Goos--H\"anchen shift to optimize the waveguide thickness. Finally, the SPP interferential field is simulated with the finite-difference time-domain (FDTD) technique to prove the optimized results, and indicates that not only is the interferential area enlarged, but the high contrast is also maintained. Furthermore, the mode can fabricate some specific interferential patterns by adding some modulating techniques to the waveguide. So the mode has potential application in the fabrication of sub-wavelength patterns.  相似文献   
79.
Spoof surface plasmon polariton (SSPP) antennas are of particular importance in communication and radar systems. Currently available SSPP radiation devices are limited to low performance with high side-lobes because it is extremely challenging to accurately control the wave vector of SSPP and the inherent momentum mismatch between the SSPP and spatial waves. Inspired by the optical principle of reversibility, high-performance radiation control of SSPP is proposed to be achieved with transmissive phase gradient metasurface (TPGM). The TPGM, placed a meticulously optimized distance above the SSPP propagation structure, can provide an additional opposite wave vector to match the momentum between the SSPP and spatial waves. When the propagating SSPP transmits on the TPGM, it can be decoupled into the free space accurately and flexibly. Numerical results coincide well with the measurements, indicating that the radiation control of SSPP achieves high-performance and low side-lobe within 9 to 10.5 GHz with the measured radiation efficiency higher than 50%. The measured maximum efficiency appears at 9.8 GHz for 69%. Thanks to the flexible and accurate manipulation of the dispersion relation of SSPP provided by TPGM, the findings may open an avenue in achieving larger angle scanning antenna.  相似文献   
80.
Airy beams represent an important class of non‐diffracting waves which can be realized on a flat surface. Being generated in the form of surface‐plasmon polaritons, such Airy plasmons demonstrate many remarkable properties: they do not diffract while propagating along parabolic trajectories, and they recover their shape after passing through obstacles. This paper reviews the basic physics of Airy plasmons in both paraxial and non‐paraxial cases, and describes the experimental methods for generation of Airy surface waves on metal surfaces, including a control of their trajectories, as well as the interference of Airy plasmons and hot‐spot generation. Many unusual properties of Airy plasmons can be utilized for useful applications, including plasmonic circuitry and surface tweezers. Picture: Observation of two colliding Airy plasmons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号