首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19688篇
  免费   2063篇
  国内免费   1255篇
化学   7337篇
晶体学   591篇
力学   827篇
综合类   233篇
数学   6887篇
物理学   7131篇
  2024年   21篇
  2023年   115篇
  2022年   217篇
  2021年   259篇
  2020年   359篇
  2019年   391篇
  2018年   398篇
  2017年   480篇
  2016年   701篇
  2015年   564篇
  2014年   863篇
  2013年   1583篇
  2012年   990篇
  2011年   1253篇
  2010年   1120篇
  2009年   1371篇
  2008年   1366篇
  2007年   1496篇
  2006年   1283篇
  2005年   1019篇
  2004年   1053篇
  2003年   957篇
  2002年   768篇
  2001年   597篇
  2000年   571篇
  1999年   500篇
  1998年   461篇
  1997年   390篇
  1996年   309篇
  1995年   258篇
  1994年   245篇
  1993年   158篇
  1992年   148篇
  1991年   104篇
  1990年   101篇
  1989年   79篇
  1988年   75篇
  1987年   52篇
  1986年   33篇
  1985年   48篇
  1984年   35篇
  1983年   26篇
  1982年   41篇
  1981年   36篇
  1980年   22篇
  1979年   17篇
  1978年   21篇
  1977年   18篇
  1976年   9篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   
992.
993.
The insertion of the single‐molecule magnet (SMM) [MnIII(salen)(H2O)]22+ (salen2?=N,N′‐ethylenebis‐(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)]2[MnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 1 ). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [MnIII(salen)(H2O)]2[ZnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 2 ) and [InIII(sal2‐trien)][MnIICrIII(ox)3] ? (H2O)0.25 ? (CH3OH)0.25 ? (CH3CN)0.25 ( 3 ), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of CrIII affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic MnIICrIII network is observed at Tc=5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3 . In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near‐reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.  相似文献   
994.
The established tradition of consuming and marketing wild mushrooms has focused attention on mycotoxicity, which has become a global issue. In the present study, we describe the toxins found in a previously unknown poisonous European mushroom Tricholoma terreum. Fifteen new triterpenoids terreolides A–F ( 1 – 6 ) and saponaceolides H–P ( 8 – 16 ) were isolated from the fruiting bodies of the toxic mushroom T. terreum. Terreolides A–C ( 1 – 3 ) possessed a unique 5/6/7 trioxaspiroketal system, whereas terreolides D–F ( 4 – 6 ) possessed an unprecedented carbon skeleton. Two abundant compounds in the mushroom, saponaceolide B ( 7 ) and saponaceolide M ( 13 ), displayed acute toxicity, with LD50 values of 88.3 and 63.7 mg kg?1 when administered orally in mice. Both compounds were found to increase serum creatine kinase levels in mice, indicating that T. terreum may be the cause of mushroom poisoning ultimately leading to rhabdomyolysis.  相似文献   
995.
Herein, we provide some structural evidence of the complexation color‐change of murexide solutions in presence of lanthanide, which has been used for decades in complexometric studies. For Ln=Sm to Lu and Y, the compounds crystallize as monomeric [Ln(Murex)3] ? 11 H2O with an N3O6 tricapped square‐antiprism environment, which are stable up to 250 °C. Single‐ion magnet (SIM) behavior is then observed on the YbIII derivative in an original nine‐coordinated environment. In‐field slow relaxation (Δ=(15.6±1) K; τ0=2.73×10?6 s) is observed with a very narrow distribution of the relaxation time (αmax=0.09). Magnetic and photophysical properties can be correlated. On one hand the analysis of NIR emission spectrum permits to have access to crystal field parameters and to compare them with those extracted from dc measurements. On the other hand, magnetic measurements permit to identify the nature of the M J states involved in the 2F5/22F7/2 luminescence spectrum. The gap between the low‐lying states is in agreement with the energy barrier obtained from magnetic slow‐relaxation measurement.  相似文献   
996.
Besides studies on the mineralization process, research on the demineralization of minerals provides another way to understand the crystallization mechanism of biominerals and fabricate crystals with complicated morphologies. The formation of ordered arrays of c‐axis‐oriented calcite microneedles with a tri‐symmetric structure and lengths of more than 20 μm was realized on a large scale for the first time through anisotropic dissolution of calcite substrates in undersaturated aqueous solution in the presence of ammonium salts. The lengths and the aspect ratios of the calcite microneedles can be tuned by simply changing the concentrations of the ammonium salts and the dissolution time. The shape of the transverse cross sections of the calcite microneedles obtained in the presence of NH4Cl and NH4Ac is almost regularly triangular. The tri‐symmetric transverse cross‐section geometry of the calcite microneedles could be attributed to the tri‐symmetric feature of rhombohedral calcite atomic structures, the synergetic interactions between electrostatic interaction of ammonium ions and dangling surface carbonate groups, and the ion incorporation of halide ions.  相似文献   
997.
Highly curved buckybowls 3 , 4 , and 5 were synthesized from planar precursors, fluoranthenes 8 , benzo[k]fluoranthenes 10 and naphtho[1,2‐k]‐cyclopenta[cd]fluoranthenes 12 , respectively, using straightforward palladium‐catalyzed cyclization reactions. These fluoranthene‐based starting materials were easily prepared from 1,8‐bis(arylethynyl)naphthalenes 6 . Both buckybowls 3 and 4 are fragments of C60, whereas 5 is a unique subunit of C70. The curved structures were identified by X‐ray crystallography, and they are deep bowls. The maximum π‐orbital axis vector (POAV) pyramidalization angle in both 3 and 4 is 12.8°. Such a high curvature is very rarely obtained. Buckybowls 5 are less curved than the others because they have a lower density of five‐membered rings, analogous to the tube portion of C70. Cyclopentaannulation increases the bowl depths of 3 and 4 , but not the maximum POAV pyramidalization angle. Among the eight buckybowls studied herein, five form polar crystals. The bowl‐to‐bowl inversion dynamics of these buckybowls can be classified into two types; one has a planar transition structure, whereas the other has an S‐shaped transition structure. A larger longitudinal length of these buckybowls corresponds to a stronger preference for the latter. The photophysical properties of these buckybowls were examined and compared with those of C60 and C70. Buckybowls 5 have absorption bands at wavelengths greater than 450 nm, which are similar to those of C70. The chiral resolution of the mono‐substituted buckybowl 4 ac was also studied by using HPLC with a chiral column.  相似文献   
998.
Previously reported fused‐pentagon fullerenes stabilized by exohedral derivatization do not share the same cage with those stabilized by endohedral encapsulation. Herein we report the crystallographic identification of #4348C66Cl10, which has the same cage as that of previously reported Sc2@C66. According to the geometrical data of #4348C66Cl10, both strain relief (at the fused pentagons) and local aromaticity (on the remaining sp2‐hybrided carbon framework) contribute to the exohedral stabilization of this long‐sought 66 carbon atom cage.  相似文献   
999.
Water surrounded by hydrophobic interfaces affects a variety of chemical reactions and biological activities. Carbon nanotubes (CNTs) can be used to investigate the behavior of water at hydrophobic interfaces. Here, we determined the fundamental unit of water by evaluating the ice‐like cluster formation of water in the limited hydrophobic nanospaces of CNTs, using X‐ray diffraction and molecular simulation analysis. The water in CNTs with a diameter of 1 nm had fewer hydrogen bonds than bulk water under ambient conditions. In CNTs with diameters of 2 and 3 nm, water formed nanoclusters even under ambient conditions, because of prolific hydrogen bonding; predominant ice‐like cluster formation was induced in the 2–3 nm nanospaces. The results confirming the cluster formation in the CNTs also demonstrated that the critical cluster size was 0.8–3.4 nm. The fundamental cluster size was 0.8 nm; these results indicated that 0.8 nm clusters are the fundamental units of water assemblies.  相似文献   
1000.
Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1′‐dinitramino‐5,5′‐bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X‐ray diffraction, EA, NMR and vibrational spectroscopy) and physico‐chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol?1) and density (2.11 g cm?3), impressive values for its detonation velocity (8330 m s?1) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号