全文获取类型
收费全文 | 1695篇 |
免费 | 387篇 |
国内免费 | 253篇 |
专业分类
化学 | 1218篇 |
晶体学 | 118篇 |
力学 | 191篇 |
综合类 | 19篇 |
数学 | 61篇 |
物理学 | 728篇 |
出版年
2024年 | 5篇 |
2023年 | 17篇 |
2022年 | 53篇 |
2021年 | 58篇 |
2020年 | 49篇 |
2019年 | 43篇 |
2018年 | 50篇 |
2017年 | 81篇 |
2016年 | 110篇 |
2015年 | 83篇 |
2014年 | 85篇 |
2013年 | 221篇 |
2012年 | 109篇 |
2011年 | 95篇 |
2010年 | 86篇 |
2009年 | 106篇 |
2008年 | 101篇 |
2007年 | 90篇 |
2006年 | 130篇 |
2005年 | 116篇 |
2004年 | 105篇 |
2003年 | 94篇 |
2002年 | 92篇 |
2001年 | 62篇 |
2000年 | 56篇 |
1999年 | 34篇 |
1998年 | 36篇 |
1997年 | 36篇 |
1996年 | 24篇 |
1995年 | 25篇 |
1994年 | 21篇 |
1993年 | 17篇 |
1992年 | 14篇 |
1991年 | 9篇 |
1990年 | 5篇 |
1989年 | 5篇 |
1988年 | 4篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1981年 | 2篇 |
1978年 | 1篇 |
1971年 | 1篇 |
1957年 | 2篇 |
排序方式: 共有2335条查询结果,搜索用时 15 毫秒
21.
采用量子 Sutton-Chen多体势, 对熔体初始温度热历史条件对液态金属Ni快速凝固过程中微观结构演变的影响进行了分子动力学模拟研究. 采用双体分布函数g(r)曲线、键型指数法、原子团类型指数法和三维可视化等分析方法对凝固过程中微观结构的演变进行了分析. 结果表明: 熔体初始温度对凝固微结构有显著影响, 但在液态和过冷态时的影响并不明显, 只有在结晶转变温度Tc附近才开始充分显现出来. 体系在1×1012 K/s的冷速下, 最终均形成以1421和1422键型或面心立方(12 0 0 0 12 0)与六角密集(12 0 0 0 6 6) 基本原子团为主的晶态结构. 末态时, 不同初始温度体系中的主要键型和团簇的数目有很大的变化范围, 且与熔体初始温度的高低呈非线性变化关系. 然而, 体系能量随初始温度呈线性变化关系, 初始温度越高, 末态能量越低, 其晶化程度越高. 通过三维可视化分析进一步发现, 在初始温度较高的体系中, 同类团簇结构的原子出现明显的分层聚集现象, 随着初始温度的下降, 这种分层现象将被弥散开去. 可视化分析将更有助于对凝固过程中微观结构演变进行更为深入的研究.
关键词:
液态金属Ni
熔体初始温度
微观结构
分子动力学模拟 相似文献
22.
Non-relativistic configuration interaction (CI) ab initio calculations using large basis sets have been carried out to determine the potential curves of the first electronic states of Ne2 +, Ar2 + and Kr2 +. The spin—orbit interaction was treated assuming that the spin—orbit coupling constant is independent of the internuclear separation (R). For Ar2 +, calculated dissociation energies and equilibrium separations are in good agreement with experimental results. The calculations for Ne2 + suggest that the lowest vibrational level of the I(1/2u) ground state observed by threshold photoelectron spectroscopy by Hall et al. [1995, J. Phys. B: At. molec. opt. Phys., 28, 2435] and assigned to either ν = 0 or ν = 2 actually corresponds to ν = 4. The calculations also predict the I(1/2g) state of Ne2 + and Ar2 + to possess a double-well potential and that of Kr2 + to be repulsive at short range and to only possess a single shallow well at large internuclear separation. The ab initio calculations provide an explanation for the observation made by Yoshii et al. [2002, J. chem. Phys., 117, 1517] that Kr2 + and Xe2 + dissociate after photoemission from the II(1/2u) state to the I(1/2g) state whereas Ar2 + does not. 相似文献
23.
Micro-shish-kebab stirring-induced polyethylene crystals, as defined and described in the preceding paper, are flat, ribbon-shaped fibers. Selected area electron-diffraction techniques were used to determine the orientation of the crystal axes with respect to the external fiber shape. It has been shown that in addition to the crystal-lographic c-axis laying along the fiber direction, the normal to the ribbon plane is parallel to the crystallographic a-axis. 相似文献
24.
Hui Sun Jie Feng Jiajun Wang Bin Yu Jing Sheng 《Journal of Macromolecular Science: Physics》2013,52(2):328-337
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR vol%: 80/20) blends were prepared by melt mixing with various mixing rotation speeds. The effect of mixing technique on microstructure and impact property of blends was studied. Phase structure of the blends was analyzed by scanning electron microscopy (SEM). All of the blends had a heterogeneous morphology. The spherical particles attributed to the PcBR-rich phase were uniformly dispersed in the continuous iPP matrix. With increase of the mixing rotation speed, the dispersed phase particle's diameter distribution became broader and the average diameter of the separated particles increased. The spherulitic morphology of the blends was observed by small angle light scattering (SALS). Higher mixing rotation speed led to a more imperfect spherulitic morphology and smaller spherulites. Crystalline structure of the blends was measured by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The introduction of 20 vol% PcBR induced the formation of iPPβ crystals. Higher rotation speed led to a decrease in microcrystal dimensions. However, the addition of PcBR and the increase of mixing rotation speed did not affect the interplanar distance. The long period values were the same within experimental error as PcBR was added or the mixing rotation speed quickened. The normalized relative degree of crystallinity of the blends slightly increased under lower rotation speeds (30 and 45 rpm) and decreased under higher rotation speeds. The notched Izod impact strength of the blends was enhanced as a result of the increase of mixing rotation speed. 相似文献
25.
ABSTRACTBased on magnetron sputtering deposition technology, titanium (Ti) thin films are deposited on silicon (Si) substrate using different preparation conditions such as sputtering power and pressure. The influence of altering these conditions on deposition rate and microstructure is studied. The results show that sputtering power significantly affects the rate of deposition and the resistivity. The deposition rate of the Ti thin film increases when the resistivity decreases under sputtering powers of 150–225?W with a pressure of 0.8?Pa and Argon (Ar) flux of 80 sccm. As sputtering power was increased further (from 225 to 250?W), the deposition rate reduced and the resistivity augmented. Pressure also has influence on the deposition rate and resistivity – when pressure increases from 0.6 to 0.8?Pa, the deposition rate escalates while the resistivity reduces; when the pressure is raised from 0.8 to 1.0?Pa with Ar flux of 100 sccm, the deposition rate decreases and resistivity increases. The surface chemical compositions and the structures of the Ti film were studied by using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD). Observing the cross-section of the thin-film samples produced by scanning electron microscope (SEM) reveals the influence of the preparation conditions used on the microstructure and confirms the influence of sputtering power and pressure on the resistivity. 相似文献
26.
Several barium plumbate (BaPbO3) solid samples, made from PbO and BaCO3 powder by chemistry liquid-phase coprecipitation, were investigated before and after γ-irradiation. The solid samples were irradiated by a 60Co γ-irradiation source whose dose rate is about 0.7?kGy per hour. The irradiation times were 0, 72, 144, 216, 288 and 360?h. Then, the four-probe method, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to indicate the changes in electrical conductivity and microstructure of BaPbO3 after γ-irradiation. The XRD results indicated that the content of PbO was reduced as the irradiation dose was increased and eventually vanished from the surface of samples. However, there was no new obvious substance phase found from the XRD atlas. It seems that the PbO transformed into nearly amorphous Pb5O8. The conjecture could be proved by the results of annealing experiment and SEM. The XPS results seem to show that the microstructure of BaPbO3 was slightly changed. 相似文献
27.
The optical absorption spectra (d-d transition bands) and covalent effect of Ni2+ ions in octahedral sites of Ca3Sc2Ge3O12 crystal have been investigated by the full energy matrix based on the two spin–orbit coupling parameters model. The bond length of octahedral site is Ri?=?2.19 Å, which can be determined by the cubic crystal-field parameter and optical spectral data. The lattice distortion of the Ni2+ center in Ca3Sc2Ge3O12 crystal is also obtained from the calculations. In addition, the result has shown that the covalent effect of Ni2+ ion in the octahedral site of Ga3Sc2Ge3O12 is obvious and cannot be ignored. The calculated d-d transition bands agree well with that of the experimental findings, suggesting that the present methods can explain reasonably the optical spectral data and covalent effect of 3d8 ions in octahedral lattices. 相似文献
28.
A high number-density of nanometer-sized stacking fault tetrahedra are commonly found during irradiation of low stacking fault energy metals. The stacking fault tetrahedra act as obstacles to dislocation motion leading to increased yield strength and decreased ductility. Thus, an improved understanding of the interaction between gliding dislocations and stacking fault tetrahedra are critical to reliably predict the mechanical properties of irradiated materials. Many studies have investigated the interaction of a screw or edge dislocation with a stacking fault tetrahedron (SFT). However, atomistic studies of a mixed dislocation interaction with an SFT are not available, even though mixed dislocations are the most common. In this paper, molecular dynamics simulation results of the interaction between a mixed dislocation and an SFT in face-centered cubic copper are presented. The interaction results in shearing, partial absorption, destabilization or simple bypass of the SFT, depending on the interaction geometry. However, the SFT was not completely annihilated, absorbed or collapsed during a single interaction with a mixed dislocation. These observations, combined with simulation results of edge or screw dislocations, suggest that defect-free channel formation in irradiated copper is not likely by a single dislocation sweeping or destruction process, but rather by a complex mix of multiple shearing, partial absorption and defect cluster transportation that ultimately reduces the size of stacking fault tetrahedra within a localized region. 相似文献
29.
30.
S.K. Karak J. Dutta Majumdar W. Lojkowski A. Michalski L. Ciupinski K.J. Kurzydłowski 《哲学杂志》2013,93(5):516-534
Ferritic steel with compositions 83.0Fe–13.5Cr–2.0Al–0.5Ti (alloy A), 79.0Fe–17.5Cr–2.0Al–0.5Ti (alloy B), 75.0Fe–21.5Cr–2.0Al–0.5Ti (alloy C) and 71.0Fe–25.5Cr–2.0Al–0.5Ti (alloy D) (all in wt%) each with a 1.0?wt% nano-Y2O3 dispersion were synthesized by mechanical alloying and consolidated by pulse plasma sintering at 600, 800 and 1000°C using a 75-MPa uniaxial pressure applied for 5?min and a 70-kA pulse current at 3?Hz pulse frequency. X-ray diffraction, scanning and transmission electron microscopy and energy disperse spectroscopy techniques have been used to characterize the microstructural and phase evolution of all the alloys at different stages of mechano-chemical synthesis and consolidation. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus were determined using a micro/nano-indenter and universal testing machine. All ferritic alloys recorded very high levels of compressive strength (850–2850?MPa), yield strength (500–1556?MPa), Young's modulus (175–250?GPa) and nanoindentation hardness (9.5–15.5?GPa), with up to 1–1.5 times greater strength than other oxide dispersion-strengthened ferritic steels (<1200?MPa). These extraordinary levels of mechanical properties can be attributed to the typical microstructure of uniform dispersion of 10–20-nm Y2Ti2O7 or Y2O3 particles in a high-alloy ferritic matrix. 相似文献