首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6767篇
  免费   1190篇
  国内免费   1102篇
化学   3636篇
晶体学   38篇
力学   482篇
综合类   78篇
数学   1013篇
物理学   3812篇
  2024年   9篇
  2023年   94篇
  2022年   183篇
  2021年   183篇
  2020年   256篇
  2019年   227篇
  2018年   187篇
  2017年   203篇
  2016年   221篇
  2015年   232篇
  2014年   321篇
  2013年   596篇
  2012年   431篇
  2011年   412篇
  2010年   336篇
  2009年   422篇
  2008年   466篇
  2007年   472篇
  2006年   459篇
  2005年   403篇
  2004年   371篇
  2003年   341篇
  2002年   295篇
  2001年   231篇
  2000年   243篇
  1999年   196篇
  1998年   200篇
  1997年   172篇
  1996年   110篇
  1995年   109篇
  1994年   94篇
  1993年   82篇
  1992年   83篇
  1991年   63篇
  1990年   49篇
  1989年   40篇
  1988年   36篇
  1987年   36篇
  1986年   27篇
  1985年   28篇
  1984年   14篇
  1983年   11篇
  1982年   26篇
  1981年   19篇
  1980年   16篇
  1979年   11篇
  1978年   12篇
  1977年   11篇
  1976年   7篇
  1973年   4篇
排序方式: 共有9059条查询结果,搜索用时 15 毫秒
71.
在过去的几十年里,得益于二氧化钛(TiO2)作为光催化剂在光催化分解水、污染物降解方面的潜在应用,人们对TiO2光催化剂的开发、改良以及TiO2表面光催化机理的基础研究方面都投入了巨大的精力。因此,在超高真空环境下,利用不同的实验和理论方法,人们对TiO2表面(特别是金红石TiO2(110)表面)的热催化和光催化过程进行了大量的研究,以此来获得上述重要反应中的一些机理性的信息。本文中,将从TiO2的物质结构以及电子结构开始,然后着重介绍TiO2表面光生电荷(电子和空穴)的传输、捕获以及电子转移动力学方面的进展。在此基础上,总结了甲醇在金红石TiO2(110)、TiO2(011)以及锐钛矿TiO2(101)表面光化学基元反应过程的一些实验结果。这些结果不仅能增进我们对表面光催化基元过程的认识,同时也能激励我们进一步去研究表面光催化基元过程。最后,基于现有光化学实验结果,简短地讨论了我们对光催化反应机理的一点看法,并提出了一个可能的光催化模型,这可以引起人们对光催化反应机理更全面的思考。  相似文献   
72.
Effects of ammonium surfactants with different hydrocarbon chain lengths (C8, C12, C16, and C18) on the colloidal forces between bitumen and silica were studied by atomic force microscopy. The results showed that the chain length of the ammonium surfactants had a significant impact on both the long-range interaction and adhesion forces. With the addition of surfactants with relative short chains of C8 and C12 in the solutions, the long-range repulsive force decreased or even became strong attractive force, while it became repulsive again in solutions of surfactants with long chains of C16 and C18. It was further observed that addition of Ca2+ in various surfactants solutions would either depress or enhance the colloidal interactions based on the surfactant chain lengths. It was believed that variation of the interaction behaviors resulted from the mono-layer or bilayer adsorption of various surfactant molecules on the negatively charged surfaces of bitumen and silica, which affected the surface wettability and the surface charge characteristics and then greatly changed the colloidal interactions. The findings indicated that, to have a high bitumen recovery and good froth quality, the surfactant type and concentration of the di-valent metal ions in the oil sand processing slurry must be well considered.  相似文献   
73.
Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant.  相似文献   
74.
The accurate ground‐state potential energy surface of silicon dicarbide, SiC2, has been determined from ab initio calculations using the coupled‐cluster approach. Results obtained with the conventional and explicitly correlated coupled‐cluster methods were compared. The core‐electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm?1. The vibration‐rotation energy levels of the SiC2, 29SiC2, 30SiC2, and SiC13C isotopologues were calculated using a variational method. The experimental vibration‐rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm?1, up to as high as the v3 = 16 state.  相似文献   
75.
A new series of C3‐symmetric, π‐conjugated molecules was designed, synthesized and characterized. The materials were derived from electron‐accepting s‐triazine, appended covalently to electron‐donating styrylbenzene arms, and were readily prepared in excellent yield with high purity by means of three‐fold condensation of triphosphonate with n‐alkoxybenzaldehydes under Horner–Wadsworth–Emmons reaction conditions. Examination of the phase transitional properties by several complementary techniques evidenced self‐assembly into a hexagonal columnar phase, occurring over wide and reasonable thermal ranges. The photophysical properties were studied both in solution and in the fluid/frozen columnar states by UV/Vis absorption and photoluminescence spectroscopy. The emission spectra obtained as a function of the temperature rule out the breaking‐up of larger columns and a non‐radiative, thermally activated process. A study carried out on thin films of the glassy columnar state, which accounts for conserved fluorescence, defect‐free orientation, and freezing ionic species, with the help of atomic force microscopy (AFM) images, suggested a homogeneous granular morphology comprising fibrillar structures. Dissimilarities in the surface morphology and birefringence of thin films of the solid and frozen columnar states were clearly shown by Raman spectroscopy. An electrochemical investigation revealed a LUMO energy of ?4.0 eV. Thus, the discotic motifs presented herein meet certain criteria of organic materials, which are essential for developing electronic devices.  相似文献   
76.
A simple method for determination of the angular orientation of water molecules in the first coordination sphere from the radial distribution functions is proposed. A comparative analysis of the ability of the model potentials of pair interaction to take into account the effects of manybody interactions (MBI) was performed. The responses of the model pair potentials to the MBI effects in the first and second coordination spheres were found to be poorly correlated with each other. It was concluded that it is necessary to derive a new analytical type of potential functions of pair interaction. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 11, pp. 1842–1846. November. 2000.  相似文献   
77.
This article describes the application of a genetic algorithm for the structural optimization of 19–50-atom clusters bound by medium-range and short-range Morse pair potentials. The GA is found to be efficient and reliable for finding the geometries corresponding to the previously published global minima [Doye JPK, Wales DJ (1997) J Chem Soc Faraday Trans 93: 4233]. Using the genetic algorithm, only a relatively small number of energy evaluations and minimizations are required to find the global minima. By contrast, a simple random search algorithm often cannot find the global minima of the larger clusters, even after many thousands of searches. Received: 27 October 1999 / Accepted: 7 December 1999 / Published online: 19 April 2000  相似文献   
78.
An efficient free energy (FE) calculation of a water molecule to go across lipid membranes is presented. Both overlapping distribution and cavity insertion Widom methods are complementarily used. The former is useful for a dense region where water molecules are found, i.e., from the interfacial to bulk water region, while the latter works well in the low density region, i.e., the hydrocarbon region. Since both methods evaluate the excess chemical potential of water, the obtained FE profile is free from the fitting problem usually arisen when a FE difference method is used. A diphytanyl phosphatidylcholine bilayer is used for our test calculations. An excellent and fast convergence of the chemical potential is obtained when each method is applied for the appropriate region. The estimated FE barrier using the Ewald method for the electrostatic interaction is approximately 7.2 kcal/mol, which is higher than that using the interaction cutoff of 20 A by about 0.9 kcal/mol.  相似文献   
79.
An experimental and theoretical study of pressure broadening and pressure shift of HCO+ rotational lines perturbed by collisions with He is presented. Results are reported from measurements at 88 K for the lines j=4←3, 5←4 and 6←5 with frequencies ranging from 0.35 to 0.54 THz. Using a new CCSD(T)/aug‐cc‐pVQZ potential energy surface for the He–HCO+ interaction, the collisional line shape parameters are studied from fully quantum and semiclassical calculations. Results from the quantum treatment are in satisfactory agreement with experiments whereas the semiclassical approach can lead to appreciable differences. A study of the dependence of line width Γ and shift s as a function of the translational energy shows the presence of quantum oscillations. Calculations on a previous Hartree–Fock‐based potential energy surface lead to quite similar results for the collisional line shape parameters. Using a simplified version of the potential morphing method it is found that the line width Γ is particularly sensitive to the long‐range part of the potential energy surface. This also explains the success of the first line‐broadening calculations which date back to the 1950s.  相似文献   
80.
Using the orbital-free quantum crystallography approach, we have disclosed the quantitative trends in electronic features for bonds of different strengths formed by tetrel (Tt) atoms in stable molecular complexes consisting of electrically neutral tetrahedral molecules and halide anions. We have revealed the role of the electrostatic and exchange-correlation components of the total one-electron static potential that are determined by the equilibrium atomic structure and by kinetic Pauli potential, which reflects the spin-dependent electron motion features of the weak and strong bonds. The gap between the extreme positions in the electrostatic and total static potentials along the line linking the Tt atom and halide anion is wide for weak bonds and narrow for strong ones. It is in very good agreement with the number of minima in the Pauli potential between the bounded atoms. This gap exponentially correlates with the exchange-correlation potential in various series with a fixed nucleophilic fragment. A criterion for categorizing the noncovalent tetrel bonds (TtB) based on the potential features is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号