首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   135篇
  国内免费   430篇
化学   953篇
晶体学   87篇
力学   2篇
综合类   11篇
物理学   74篇
  2024年   7篇
  2023年   26篇
  2022年   47篇
  2021年   58篇
  2020年   80篇
  2019年   57篇
  2018年   37篇
  2017年   68篇
  2016年   51篇
  2015年   42篇
  2014年   37篇
  2013年   109篇
  2012年   64篇
  2011年   61篇
  2010年   27篇
  2009年   37篇
  2008年   36篇
  2007年   39篇
  2006年   34篇
  2005年   43篇
  2004年   29篇
  2003年   32篇
  2002年   25篇
  2001年   29篇
  2000年   15篇
  1999年   19篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有1127条查询结果,搜索用时 296 毫秒
81.
首先采用溶剂热法将1D TiO_2纳米带均匀地穿插到片层结构组装而成的3D ZnIn_2S_4微球中,所形成的异质结构能有效抑制光生电子-空穴对。其次利用光沉积法将0D Ag纳米粒子负载在3D ZnIn_2S_4/1D TiO_2异质结构上。得益于0D Ag纳米粒子的等离子体效应及电子助催化剂作用,三元3D ZnIn_2S_4/1D TiO_2/0D Ag复合光催化剂在分解水制氢方面表现出优异的性能。在模拟太阳光照射下,ZnIn_2S_4/TiO_2/Ag复合光催化剂的产氢速率达到715μmol·g~(-1)·h~(-1),相对于ZnIn_2S_4/TiO_2、ZnIn_2S_4/P25、ZnIn_2S_4、TiO_2和P25分别提高了2.7倍、3.3倍、3.8倍、184倍和518倍。同时借助于X射线衍射、扫描电子和透射电子显微镜、X射线光电子能谱和紫外可见漫反射光谱等表征手段进一步论证了复合催化剂的优异性能。  相似文献   
82.
实际废水中存在的离子会对有机污染物的光催化降解产生影响。以ZrCl4和2,5-二羟基对苯二甲酸为原料,通过水热合成法成功制备了金属有机骨架材料UIO-66-2OH。通过红外(IR)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对UIO-66-2OH的结构进行表征。利用水中常见的金属阳离子和无机阴离子,探索UIO-66-2OH的光催化性能。研究发现,金属阳离子Fe3+和无机阴离子HCO3-、CO32-可以加快光催化降解的速度。然而,金属离子Na+、K+、Ca2+、Mg2+、Cu2+和无机阴离子Cl-、SO42-、PO43-会抑制光催化性能,且离子价态越高,抑制效果越明显。  相似文献   
83.
TiO2异相结主要通过高温方法制备,所制备材料的形貌和组成较难控制,尤其是在较低温度下一步制备一维TiO2异相结仍具有一定的挑战性。采用简单、方便的一步水热法,在较低温度下(180℃)制备了一维纳米TiO2异相结材料。X射线衍射(XRD)和高分辨透射电镜(HRTEM)分析表明,制备的材料以一维金红石相TiO2纳米棒(长度:(400±50) nm,直径:(60±5) nm)为基本结构,粒径分布均匀的锐钛矿相TiO2纳米粒子(直径:(9.5±0.5) nm)高密度、单分散地负载在纳米棒上。通过控制水热反应时间成功调控了异相结中锐钛矿相TiO2的含量(20%~50%),进而实现了其光催化降解HCHO性能的调控。实验结果表明,当锐钛矿相TiO2的含量为33%时(TiO2-24,水热时间24 h制备的样品),异相结光催化剂表现出最佳的HCHO降解性能:在低光强LED灯(波长为365 nm,光强为12.26 mW·cm  相似文献   
84.
采用一步电化学法在金属 Bi板上成功制备了 Bi OCl0.5Br0.5/Bi PO4双层异质结薄膜,并通过多种表征手段对薄膜的晶型结构、元素组成及化合价、形貌和尺寸特征、吸光性能和荧光强度进行了表征。结果表明,制备得到的复合薄膜呈现出上层为梭子状的 Bi PO4颗粒层分散在下层为 Bi OCl0.5Br0.5固溶体层的双层结构。这样的双层膜排列顺序使得光生电子和空穴在不同组分之间的界面电场作用下分别向薄膜两侧流动,促进光致载流子的分离,提高了 Bi OCl0.5Br0.5/Bi PO4复合薄膜的光催化活性。活性测试结果表明,在模拟太阳光照射 120 min 后,Bi OCl0.5Br0.5/Bi PO4复合薄膜对苯酚的降解率达到了 99.97%,是相同条件下制备的 Bi OCl/Bi PO4和 Bi O...  相似文献   
85.
通过高温煅烧ZnSn(OH)6前驱体制备了双壳中空立方体结构的ZnSnO3(ZSO),进而采用水热法将CdIn2S4(CIS)纳米晶包裹在ZSO表面,成功制备了CdIn2S4/ZnSnO3(CIS/ZSO)异质催化剂。活性产氢实验结果表明,CIS、ZSO物质的量之比为12%时制备的12% CIS/ZSO具有优异的光催化产氢性能,在3 h内产氢量为1 676.48 μmol·g-1,分别是ZSO和CIS的12倍和8倍。ZSO光催化析氢反应活性的增强归因于CIS/ZSO异质结构的成功构建,异质界面的形成显著提高了光生电子/空穴对的分离效率,降低了其复合率。通过对电荷转移路径的分析,提出了可能的反应机理。  相似文献   
86.
氢气以其清洁无污染、燃烧值高等优点成为未来最具潜力的可再生能源之一,而清洁生产氢气的最佳选择之一即为裂解水. 利用太阳能模拟光合作用实现水的全分解产生氢气和氧气是目前最为理想的能源转化方式,并且已经引起了众多研究者的关注. 水分解的半反应之一--水氧化反应由于其过程复杂,一直是制约水分解的瓶颈. 所以寻找高效、稳定的水氧化催化剂便成为了突破该瓶颈的关键. 多金属氧酸盐是一类以前过渡金属氧簇为基本单元形成的多金属氧簇化合物. 由于多金属氧酸盐在物理、化学性质方面具有无法比拟的特性,使得其在催化、药物、纳米科技和材料科学等方面已被广泛地应用. 多金属氧酸盐的全无机配体可很好地抵御水氧化反应的强氧化性环境,故将其作为水氧化催化剂越来越引起研究者们的注意,并且已有多种多金属氧酸盐被设计为水氧化催化剂. 本文详细介绍了各种不同过渡金属取代的多金属氧酸盐水氧化催化剂的研究进展.  相似文献   
87.
合成了3个配合物{[Zn_3(L)_2(SO_4)_2(H_2O)_4]·H_2O}n(1)、{[Cd_2(L)_2(SO_4)(H_2O)]·H_2O}n(2)和{[Cd(L)I]·CH_3OH}n(3)(HL=N′-nicotinoylpyrazine-2-carbohydrazonamide),并通过单晶X射线衍射、红外、元素分析和粉末X射线衍射等手段进行表征。配合物1中,采用μ3-η1η1η1配位模式的SO_4~(2-)把Zn(Ⅱ)连接成无机网状二维平面(bc面),有机配体HL交错的分布在网状平面的两侧,这些二维层在分子间氢键的作用下形成三维超分子结构。配合物2是由配体HL连接[(Cd2)2(μ2-SO4)2]和Cd1两种节点形成的二维结构,相邻的二维层在π…π堆积作用下形成三维超分子结构。配合物3是一维的Z字链结构,这些一维链在氢键的连接作用下形成二维的超分子网络结构。光催化降解亚甲基蓝实验结果表明,在双氧水存在时配合物1~3均表现出很好的降解效果。  相似文献   
88.
M‐doped NH2‐MIL‐125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), X‐ray absorption fine structure (XAFS) analyses, N2‐sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible‐light irradiations showed that the noble metal‐doping on NH2‐MIL‐125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2‐MIL‐125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt‐ and Au‐loaded NH2‐MIL‐125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2‐MIL‐125(Ti), Pt/NH2‐MIL‐125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2‐MIL‐125(Ti).The photocatalytic mechanisms over M/NH2‐MIL‐125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2‐MIL‐125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2‐MIL‐125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal‐doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions.  相似文献   
89.
时晓羽  李会鹏  赵华 《分子催化》2019,33(4):391-397
由两种不同的半导体催化剂和电子传输介质建立的Z-Scheme光催化体系,通过在可见光照射下分别在两种半导体催化剂上进行氧化反应和还原反应,实现两步法光催化分解水和二氧化碳还原.相较于离子型Z-Scheme光催化体系,全固态Z-Scheme光催化体系具有适用范围广、无副反应、光源利用率高等特性,具有更加广阔的应用前景.在此,我们简述了Z-Scheme光催化体系的反应机理,综述了全固态Z-Scheme光催化体系在光催化分解水和光催化还原CO2领域的应用,并对未来全固态Z-Scheme光催化体系的发展进行了展望.  相似文献   
90.
利用类石墨氮化碳(g-C_3N_4)和亚稳相钙钛氧化物(CaTi_2O_5)固相法制备C_3N_4/CaTi_2O_5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C_3N_4与CaTi_2O_5物质的量之比(nC_3N_4/nCaTi_2O_5)对C_3N_4/CaTi_2O_5复合样品的物相结构和微观形貌的影响,同时考察C_3N_4/CaTi_2O_5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C_3N_4和CaTi_2O_5样品,C_3N_4/CaTi_2O_5复合样品在可见光下具有较高的光催化性能,随着nC_3N_4/nCaTi_2O_5增加,样品的光催化降解率随之增加而后降低,当nC_3N_4/nCaTi_2O_5=1∶1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号