首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   54篇
  国内免费   172篇
化学   417篇
晶体学   19篇
力学   3篇
综合类   2篇
物理学   53篇
  2024年   4篇
  2023年   10篇
  2022年   13篇
  2021年   30篇
  2020年   32篇
  2019年   29篇
  2018年   24篇
  2017年   34篇
  2016年   19篇
  2015年   13篇
  2014年   15篇
  2013年   45篇
  2012年   18篇
  2011年   15篇
  2010年   32篇
  2009年   12篇
  2008年   26篇
  2007年   14篇
  2006年   21篇
  2005年   13篇
  2004年   17篇
  2003年   15篇
  2002年   10篇
  2001年   17篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
281.
利用沉淀法制备了四氧化三铁包覆的磷酸银高效可见光催化剂;采用X射线粉末衍射仪、固体紫外可见漫反射光谱仪及荧光光谱仪分析了催化剂的晶体结构和光学性质.与此同时,以光催化降解亚甲基蓝(MB)为探针反应,对催化剂的可见光催化性能进行了考察.结果表明,Fe3O4负载量为2%(质量分数)的复合催化剂对MB的降解率在60min时几乎达到100%;但随着Fe3O4负载量的增加,催化剂的光催化活性有所下降.  相似文献   
282.
通过水热法和光还原方法成功地制备了铌酸锰-还原氧化石墨烯复合光催化剂。这种复合光催化剂可以明显地提高光催化降解亚甲基蓝的光催化活性,降解效率在60 min内达到了78.2%,是单体铌酸锰降解效率的2倍。通过活性物质捕获实验的研究,增强的光催化性能可以归因于还原氧化石墨烯加速了光生电子-空穴的分离效率,进而解决了低光催化活性的问题。  相似文献   
283.
可见光响应光催化剂研究进展*   总被引:31,自引:0,他引:31  
本文综述了近年来可见光响应光催化剂的研究进展,从窄禁带半导体开发、表面光敏化和离子掺杂三个方面,详细探讨了该类光催化剂的构成原理、设计思想、制备方法、目前效果及缺点,展望了该领域的研究前景.  相似文献   
284.
魏平玉  杨青林  郭林 《化学进展》2009,21(9):1734-1741
卤氧化铋,BiOX (X=Cl, Br, I)作为一种新型光催化剂,由于具有特殊的层状结构和合适的禁带宽度从而显示出优异的光催化性能。本文主要对微纳米卤氧化铋光催化剂的制备方法、形貌尺寸及光催化性能进行了综述。卤氧化铋的光催化活性普遍优于商品TiO2 (P25)的光催化活性,并且随着卤素原子序数的增加光催化活性逐渐增强。此外,卤氧化铋光催化剂还具有很高的稳定性。借助于掺杂改性,卤氧化铋的光催化性能得到进一步改善;通过晶体结构和能带结构的设计合成可以得到高活性的卤氧化铋化合物光催化剂。最后,对卤氧化铋光催化剂今后的研究方向进行了展望。  相似文献   
285.
In the present study, porous zinc hydroxide was successfully prepared via a simple sol–gel route. The synthesized porous zinc hydroxide was characterized using scanning electron microscopy (SEM), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) techniques. In addition, the prepared porous zinc hydroxide was studied as a photocatalyst for the degradation of methyl red. The degradation behavior of porous zinc hydroxide was investigated systematically. The experimental results showed that the obtained porous zinc hydroxide displayed excellent degradation efficiency (89%) under visible light irradiation. Thus, porous zinc hydroxide can be used as an effective photocatalyst for the degradation of methyl red, which can be used for industrial wastewater treatment.  相似文献   
286.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   
287.
Herein, for the first time, a direct Z‐scheme g‐C3N4/NiFe2O4 nanocomposite photocatalyst was prepared using facile one‐pot hydrothermal method and characterized using XRD, FT‐IR, DRS, PL, SEM, EDS, TEM, HRTEM, XPS, BET and VSM characterized techniques. The result reveals that the NiFe2O4 nanoparticles are loaded on the g‐C3N4 sheets successfully. The photocatalytic activities of the as‐prepared photocatalysts were evaluated for the degradation of methyl orange (MO) under visible light irradiation. It was shown that the photocatalytic activity of the g‐C3N4/NiFe2O4 nanocomposite is about 4.4 and 3 times higher than those of the pristine NiFe2O4 and g‐C3N4 respectively. The enhanced photocatalytic activity could be ascribed to the formation of g‐C3N4/NiFe2O4 direct Z‐scheme photocatalyst, which results in efficient space separation of photogenerated charge carriers. More importantly, the as‐prepared Z‐scheme photocatalyst can be recoverable easily from the solution by an external magnetic field and it shows almost the same activity for three consecutive cycles. Considering the simplicity of preparation method, this work will provide new insights into the design of high‐performance magnetic Z‐scheme photocatalysts for organic contaminate removal.  相似文献   
288.
Novel magnetic hybrid nanomaterials 1 (LaFeO3.Fe3O4@SiO2-NH2/PW12) were synthesized by supporting phosphotungstic acid (H3PW12O40; PW12) on LaFeO3.Fe3O4 nanomaterials through sono-assisted method. The synthesized nanomaterials were fully characterized by using FT-IR, XRD, UV–vis, BET-BJH, VSM, SEM, and TEM analyses. FT-IR, XRD, and UV–vis confirmed successful synthesis of nanomaterials. The SEM and TEM images revealed spherical morphology with core-shell structure for hybrid nanomaterials 1 . VSM results confirmed the magnetic property of hybrid nanomaterials 1 and suggested it as easily recyclable photocatalyst for removal of organic dyes from aqueous solution. The photocatalytic activity of hybrid nanomaterials 1 has been studied over the degradation of methylene blue (MB) and methyl orange (MO) solution under UV–vis light irradiation. Importantly the hybrid nanomaterials 1 showed outstanding degradation efficiency for MB solution in comparison with bare LaFeO3.Fe3O4 and PW12. The photocatalytic activity was enhanced mainly due to the high efficiency in separation of electron–hole pairs induced by the remarkable synergistic effects of LaFeO3.Fe3O4 and PW12 semiconductors. After the photocatalytic reaction, the nanocomposite can be easily separated from the reaction solution and reused several times without loss of its photocatalytic activity. Trapping experiments indicated that hole (hVB+) and OH radicals were the main reactive species for dye degradation in the present photocatalytic system. On the basis of the experimental results and estimated band gaps, the mechanism for the enhanced photocatalytic activity was proposed.  相似文献   
289.
In this paper Cu3V2O8 nanoparicles were synthesized with a low-cost and green method with using the extract of Moringa peregrine. This novel synthesized material was characterized by using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDS) analysis. The analysis showed the produced nanoparticles have high purity and well crystalline structure. Moreover, the capability of the nanostructures for the removal of dye pollutants was evaluated. For this purpose, methylene blue was selected as a model of organic dye. The experiments showed Cu3V2O8 nanoparticles have high efficiency for removing of dye molecules. Photocatalytic decolorization of methyl blue was optimized with varying the experiment conditions. With 0.02 g of catalyst, pH 6 and concentration of dye 30 mg/l removal efficiency was obtained about 90% in a short time 20 min. Also a kinetic study showed this photodegradation process obeys a first-order kinetic with rate constant about 0.07 min−1.  相似文献   
290.
Water decontamination still remains a major challenge to some developing countries not having centralized wastewater systems. Therefore, this study presents the optimization of photocatalytic degradation of Basic Blue 41 dye in an aqueous medium by an activated carbon (AC)-TiO2 photocatalyst under UV irradiation. The mesoporous AC-TiO2 synthesized by a sonication method was characterized by X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy for crystal phase identification and molecular bond structures, respectively. The efficiency of the AC-TiO2 was evaluated as a function of three input variables viz. catalyst load (2–4 g), reaction time (15–45 min) and pH (6–9) by using Box-Behnken design (BBD) adapted from response surface methodology. Using color and turbidity removal as responses, a 17 run experiment matrix was generated by the BBD to investigate the interaction effects of the three aforementioned input factors. From the results, a reduced quadratic model was generated, which showed good predictability of results agreeable to the experimental data. The analysis of variance (ANOVA), signposted the selected models for color and turbidity, was highly significant (p < 0.05) with coefficients of determination (R2) values of 0.972 and 0.988, respectively. The catalyst load was found as the most significant factor with a high antagonistic impact on the process, whereas the interactive effect of reaction time and pH affected the process positively. At optimal conditions of catalyst load (2.6 g), reaction time (45 min), and pH (6); the desirability of 96% was obtained by a numerical optimization approach representing turbidity removal of 93% and color of 96%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号