全文获取类型
收费全文 | 1364篇 |
免费 | 427篇 |
国内免费 | 717篇 |
专业分类
化学 | 2296篇 |
晶体学 | 77篇 |
综合类 | 18篇 |
物理学 | 117篇 |
出版年
2024年 | 19篇 |
2023年 | 63篇 |
2022年 | 135篇 |
2021年 | 136篇 |
2020年 | 258篇 |
2019年 | 135篇 |
2018年 | 126篇 |
2017年 | 112篇 |
2016年 | 193篇 |
2015年 | 165篇 |
2014年 | 128篇 |
2013年 | 188篇 |
2012年 | 144篇 |
2011年 | 111篇 |
2010年 | 79篇 |
2009年 | 62篇 |
2008年 | 69篇 |
2007年 | 63篇 |
2006年 | 66篇 |
2005年 | 75篇 |
2004年 | 36篇 |
2003年 | 48篇 |
2002年 | 26篇 |
2001年 | 23篇 |
2000年 | 10篇 |
1999年 | 17篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1983年 | 1篇 |
排序方式: 共有2508条查询结果,搜索用时 15 毫秒
31.
Kaitlyn A. Perez Cameron R. Rogers Emily A. Weiss 《Angewandte Chemie (International ed. in English)》2020,59(33):14091-14095
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl‐protected phenols. For a series of aryl sulfonates with electron‐withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD‐binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions. 相似文献
32.
Julien Warnan Erwin Reisner 《Angewandte Chemie (International ed. in English)》2020,59(40):17344-17354
From the understanding of biological processes and metalloenzymes to the development of inorganic catalysts, electro‐ and photocatalytic systems for fuel generation have evolved considerably during the last decades. Recently, organic and hybrid organic systems have emerged to challenge the classical inorganic structures through their enormous chemical diversity and modularity that led earlier to their success in organic (opto)electronics. This Minireview describes recent advances in the design of synthetic organic architectures and promising strategies toward (solar) fuel synthesis, highlighting progress on materials from organic ligands and chromophores to conjugated polymers and covalent organic frameworks. 相似文献
33.
34.
SnO2TiO2 复合半导体纳米薄膜的研究进展* 总被引:5,自引:0,他引:5
本文概述了SnO2TiO2 复合半导体纳米薄膜的发展历史和研究现状,对比分析了“混合”、“核壳”和“叠层”3 种复合薄膜的结构和性能特点,着重论述了叠层结构的SnO2 /TiO2复合薄膜的光电化学和光催化特性。结合作者的研究工作,探讨了SnO2 /TiO2双层复合薄膜上下层厚度对其光催化活性的影响,指出复合薄膜光催化活性的提高可归因于电子从TiO2 向SnO2 的迁移。最后对SnO2 /TiO2复合薄膜的局限性和发展潜势做一简要分析,强调了该复合薄膜本身的应用特点。 相似文献
35.
TiO2 decorated with partially crystallized Pd nanoparticles (Pd/TiO2-P) was successfully prepared by atmospheric-pressure dielectric barrier discharge cold plasma. The XRD and XPS analyses proved that Pd ions were reduced to partially crystallized metallic Pd nanoparticles in Pd/TiO2-P. The XPS spectra also indicated that an enhanced metal-support interaction was formed due to the existence of partially crystallized Pd nanoparticles with lower coordination number in Pd/TiO2-P. Photocatalytic activity of Pd/TiO2-P was much higher than that of TiO2 samples decorated with well crystallized Pd nanoparticles. 相似文献
36.
综述了近年来国内外利用氮掺杂改性二氧化钛的光催化剂性能、提高可见光的利用效率的最新研究进展;分析和讨论了氮掺杂二氧化钛的制备方法、理论计算和结构模型、掺杂机理等;总结了氮掺杂改性二氧化钛存在的问题,同时讨论了今后的研究方向. 相似文献
37.
Photocatalytic materials are attracting attention as emerging resources for agricultural applications. This timely review assesses the current developments in the use of biocompatible titanium dioxide (TiO2)-based photocatalytic nanomaterials (TiO2-PN) as models to unravel agricultural growth, harvest, and post-harvest problems. Such developments can lead to technological innovations aimed at addressing the pressing global environmental challenges faced by farming. TiO2-PN have been used as antimicrobial, growth-regulating, and fertilizer-like agents. The promising agricultural research applications of TiO2-PN are highlighted along with a discussion of the main challenges that will need to be overcome to fully understand the roles of TiO2-PN in the sustainable and productive exploitation of land and water for agricultural applications under natural conditions. In particular, rhizosphere internalization, translocation, and plant bioaccumulation pathways of photocatalytic materials from environmental exposition are outlined to illustrate the effect of TiO2 on the agricultural cycle. Nanotoxicology and regulations are also discussed to illustrate the importance of biocompatibility and green synthesis of nanomaterials for safe use in real applications. This overview is focused on motivating and intensifying our understanding of on-site agricultural studies. Complementary biological approaches and structural damage observed by biological transmission electron, scanning electron, and optical microscopies should accelerate the practical contribution of TiO2-PN to sustainable agriculture in conjunction with plant factories and plasma nitrogen fixation technology. Loadings below 10 μg/L of TiO2-PN with a size of 40 nm benefit seed germination and root elongation as well as partially suppressing metal root translocation. However, only approximately 5% of current studies were carried out in real agricultural settings. 相似文献
38.
Zhiwei Cui Jun Zhou Teng Liu Yicong Wang Yue Hu Ying Wang Zhigang Zou 《化学:亚洲杂志》2019,14(12):2138-2148
A series of porphyrin‐containing polyimide (PI) photocatalysts were synthesized by a one‐step solvothermal method. Characterization results revealed that porphyrin was uniformly coupled into the PI framework through covalent bonding and the visible‐light absorption was greatly improved. The photodegradation activity of porphyrin‐containing PIs for methyl orange (MO) under visible light was enhanced significantly, with the highest pseudo‐first‐order rate constant 35 times higher than that of neat porphyrin and 10 times higher than that of porphyrin‐free PI. The enhancement is mainly attributed to an increased light harvesting accompanied by a varied HOMO level, which was clarified by control experiments, characterizations and theoretical calculations. This work provides an insight into multiple effects of dye molecules in dye‐containing heterogeneous photocatalysts. 相似文献
39.
Dr. Ran Du Dr. Jan-Ole Joswig Dr. René Hübner Lin Zhou Dr. Wei Wei Prof. Yue Hu Prof. Dr. Alexander Eychmüller 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(21):8370-8377
Noble-metal aerogels (NMAs) have drawn increasing attention because of their self-supported conductive networks, high surface areas, and numerous optically/catalytically active sites, enabling their impressive performance in diverse fields. However, the fabrication methods suffer from tedious procedures, long preparation times, unavoidable impurities, and uncontrolled multiscale structures, discouraging their developments. By utilizing the self-healing properties of noble-metal aggregates, the freezing-promoted salting-out behavior, and the ice-templating effect, a freeze–thaw method is crafted that is capable of preparing various hierarchically structured noble-metal gels within one day without extra additives. In light of their cleanliness, the multi-scale structures, and combined catalytic/optical properties, the electrocatalytic and photoelectrocatalytic performance of NMAs are demonstrated, which surpasses that of commercial noble-metal catalysts. 相似文献
40.
Elaine Tsui Anthony J. Metrano Yuto Tsuchiya Prof. Robert R. Knowles 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(29):11943-11947
We report a catalytic, light-driven method for the intramolecular hydroetherification of unactivated alkenols to furnish cyclic ether products. These reactions occur under visible-light irradiation in the presence of an IrIII-based photoredox catalyst, a Brønsted base catalyst, and a hydrogen-atom transfer (HAT) co-catalyst. Reactive alkoxy radicals are proposed as key intermediates, generated by direct homolytic activation of alcohol O−H bonds through a proton-coupled electron-transfer mechanism. This method exhibits a broad substrate scope and high functional-group tolerance, and it accommodates a diverse range of alkene substitution patterns. Results demonstrating the extension of this catalytic system to carboetherification reactions are also presented. 相似文献