首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8503篇
  免费   962篇
  国内免费   501篇
化学   4387篇
晶体学   63篇
力学   595篇
综合类   49篇
数学   2370篇
物理学   2502篇
  2024年   14篇
  2023年   86篇
  2022年   190篇
  2021年   200篇
  2020年   305篇
  2019年   283篇
  2018年   225篇
  2017年   227篇
  2016年   318篇
  2015年   290篇
  2014年   349篇
  2013年   896篇
  2012年   357篇
  2011年   408篇
  2010年   345篇
  2009年   401篇
  2008年   437篇
  2007年   473篇
  2006年   414篇
  2005年   387篇
  2004年   396篇
  2003年   354篇
  2002年   412篇
  2001年   291篇
  2000年   249篇
  1999年   219篇
  1998年   180篇
  1997年   205篇
  1996年   145篇
  1995年   149篇
  1994年   110篇
  1993年   88篇
  1992年   93篇
  1991年   74篇
  1990年   47篇
  1989年   32篇
  1988年   33篇
  1987年   32篇
  1986年   30篇
  1985年   41篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   18篇
  1980年   16篇
  1979年   13篇
  1978年   7篇
  1977年   10篇
  1974年   7篇
  1973年   13篇
排序方式: 共有9966条查询结果,搜索用时 187 毫秒
991.
王珺  杨帆  陈大鹏 《力学学报》2002,34(5):735-742
高聚物在电子和航空等领域得到广泛运用,由于高聚物的亲水性,常常发生由于湿热引起的结构失效甚至材料的断裂.近年来,有实验显示,高聚物中的湿热效应及其力学反响是相互影响的,同时,考虑到高聚物的黏弹性,发展新的包含湿热效应的黏弹性本构方程来描述该问题是必要的.本文基于不可逆热力学的基本原理,运用连续介质力学的方法,通过引入内变量表示高聚物的黏性效应,基于 Helmholtz自由能导出一种热、湿分和黏弹性力学性质三场耦合的本构关系和系统控制方程,对实际的分析应用有较强的指导意义.  相似文献   
992.
A computational fluid dynamics technique has been used to predict the likely concentration levels along a pipe wall of chemicals injected radially from a nozzle. No published empirical data appear to be available, despite the importance of this subject in protecting pipe walls in the vicinity of the dosing point if the chemicals and pipe materials are incompatible. Validation of predictions is by comparison with experimental data for other parameters related to the flow. Where possible, results have been analyzed and presented in dimensionless form so that the article can act as a more generally useful design guide.  相似文献   
993.
In this study, we have investigated the influence of shape of planar contractions on the orientation distribution of stiff fibers suspended in turbulent flow. To do this, we have employed a model for the orientational diffusion coefficient based on the data obtained by high-speed imaging of suspension flow at the centerline of a contraction with flat walls. This orientational diffusion coefficient depends only on the contraction ratio and turbulence intensity. Our measurements show that the turbulence intensity decays exponentially independent of the contraction angle. This implies that the turbulence variation in the contraction is independent of the shape, consistent with the results by the rapid distortion theory and the experimental results of axisymmetric contractions. In order to determine the orientation anisotropy, we have solved a Fokker–Planck type equation governing the orientation distribution of fibers in turbulent flow. Although the turbulence variation and the orientational diffusion are independent of the contraction shape, the results show that the variation of the orientation anisotropy is dependent on shape. This can be explained by the variation of the rotational Péclet number, Per, inside the contractions. This quantity is a measure of the importance of the mean rate of the strain relative to the orientational diffusion. We have shown that when Per < 10 turbulence can significantly influence the evolution of the orientation anisotropy. Since in contractions with identical inlet conditions the streamwise position where Per = 10 depends on the shape, the orientation anisotropy is dependent on the variation of rate of strain in a given contraction. We demonstrate the shape effect by considering contraction with flat walls as well as three contractions with different mean rate of strain variation.  相似文献   
994.
A mathematical model is constructed for motion of a heavy gas along the underlying terrain on the basis of equations of gas dynamics with allowance for the force of gravity, transfer by air masses, and turbulent diffusion. With the use of the method of coarse particles, the time dependences of the coordinates of the fore front, upper boundary, and volume of the cloud of a heavy gas in the presence and absence of wind are analyzed. It is shown that turbulent diffusion leads to a linear increase in cloud volume in time. Three-dimensional shapes of the heavy gas cloud are obtained for various ambient conditions. It is shown that, despite diffusion, the heavy gas spreads predominantly along the underlying terrain.  相似文献   
995.
In the paper anomalous diffusion appearing in a porous medium composed of two porous components of considerably different diffusion characteristics is examined. The differences in diffusivities are supposed to result either from two medium types being present or from variations in pore size (double porosity media). The long-tail effect is predicted using the homogenization approach based on the application of multiple scale asymptotic developments. It is shown that, if the ratio of effective diffusion coefficients of two porous media is of the order of magnitude smaller or equal O( 2), where is a homogenization parameter, then the macroscopic behaviour of the composite may be affected by the presence of tail-effect. The results of the theoretical analysis were applied to a problem of diffusion in a bilaminate composite. Analytical calculations were performed to show the presence of the long-tail effect in two particular cases.Notations c i the concentration of chemical species in water within the medium i - D i the effective diffusion coefficient for the medium i - D ij eff the macroscopic (or effective) diffusion tensor in the composite - ERV the elementary representative volume - h the thickness of the period - l a chracteristic length of the ERV or the periodic cell - L a characteristic macroscopic length - n the volumetric fraction of the material 2 - 1–n the volumetric fraction of the material 1 - N the unit vector normal to - t the time variable - x the macroscopic (or slow) space variable - y the microscopic (or fast) space variable - c 1c ,C 2c ,D 1c ,D 2c the characteristic quantities - T,T 1L ,T 2L ,T 1l ,T 2l the characteristic times - c 1 * ,c 2 * ,D 1 * ,D 2 * ,t * the non-dimensional variables - the homogenization parameter - 1 the domain occupied by the material 1 - 2 the domain occupied by the material 2 - the interface between the domains 1 and 2 - the total volume of the periodic cell - /xi the gradient operator - the gradient operator  相似文献   
996.
Observation time-dependent self-diffusion coefficients can be used to obtain microstructural information of porous media. This paper presents two different kinds of Monte Carlo simulations of the self diffusion process of fluids like water in porous systems, a lattice-free method and a lattice-based method. The results for simple porous media model geometries agree well with each other and with published analytical as well as semi-analytical equations. The use of these equations, which are important for the interpretation of Pulsed Field Gradient-Nuclear Magnetic Resonance (PFG-NMR) time-dependent diffusion data with respect to properties of porous media, is discussed.  相似文献   
997.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   
998.
We consider a quasistatic problem of frictional contact between a viscoelastic body and a moving foundation. The contact is with wear and is modeled by normal compliance and a law of dry friction. The novelty in the model is that it allows for the diffusion of the wear debris over the potential contact surface. Such kind of phenomena arise in orthopaedic biomechanics and influence the properties of joint prosthesis. We derive a weak formulation of the problem and state that, under a smallness assumption on the problem data, there exists a unique weak solution for the model. To cite this article: M. Shillor et al., C. R. Mecanique 331 (2003).  相似文献   
999.
Different from the approaches used in the earlier papers, in this paper, the Halanay inequality technique, in combination with the Lyapunov method, is exploited to establish a delay-independent sufficient condition for the exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion terms. Moreover, for the deterministic delayed Cohen–Grossberg neural networks, with or without reaction–diffusion terms, sufficient criteria for their global exponential stability are also obtained. The proposed results improve and extend those in the earlier literature and are easier to verify. An example is also given to illustrate the correctness of our results.  相似文献   
1000.
A boundary layer analysis is used to investigate the effect of lateral mass flux on mixed convection heat and mass transfer over inclined permeable surfaces in porous media. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations and then the resulting equations is solved by numerical method. The numerical results for heat and mass transfer in terms of Nusselt and Sherwood number are presented in x-y plots for the buoyancy ratio (N) and Lewis number (Le) with mass flux pammeter (Fw). The obtained results are validated against previously published results with on special case of the problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号