首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3268篇
  免费   966篇
  国内免费   352篇
化学   1164篇
晶体学   129篇
力学   304篇
综合类   53篇
数学   481篇
物理学   2455篇
  2024年   4篇
  2023年   37篇
  2022年   107篇
  2021年   123篇
  2020年   134篇
  2019年   116篇
  2018年   109篇
  2017年   161篇
  2016年   178篇
  2015年   148篇
  2014年   215篇
  2013年   342篇
  2012年   250篇
  2011年   251篇
  2010年   234篇
  2009年   201篇
  2008年   225篇
  2007年   236篇
  2006年   202篇
  2005年   170篇
  2004年   143篇
  2003年   124篇
  2002年   133篇
  2001年   88篇
  2000年   103篇
  1999年   102篇
  1998年   58篇
  1997年   52篇
  1996年   65篇
  1995年   52篇
  1994年   43篇
  1993年   36篇
  1992年   29篇
  1991年   21篇
  1990年   11篇
  1989年   14篇
  1988年   13篇
  1987年   9篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1982年   2篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1973年   2篇
  1957年   1篇
  1936年   1篇
排序方式: 共有4586条查询结果,搜索用时 15 毫秒
171.
A new oligosiloxane derivative (ODCzMSi) functionalized with the well‐known 1,3‐bis(9‐carbazolyl)benzene (mCP) pendant moiety, directly linked to the silicon atom of the oligosiloxane backbone, has been synthesized and characterized. Compared to mCP, the attachment of the oligosiloxane chain significantly improves the thermal and morphological stabilities with a high decomposition temperature (Td=540 °C) and glass transition temperature (Tg=142 °C). The silicon–oxygen linkage of ODCzMSi disrupts the backbone conjugation and maintains a high triplet energy level (ET=3.0 eV). A phosphorescent organic light‐emitting diode (PhOLED) using iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2 picolinate (FIrpic) as the emitter and ODCzMSi as the host shows a relatively low turn‐on voltage of 5.0 V for solution‐processed PhOLEDs, maximum external quantum efficiency of 9.2 %, and maximum current efficiency of 17.7 cd A?1. The overall performance of this device is competitive with the best reported solution‐processed blue PhOLEDs. Memory devices using ODCzMSi as an active layer exhibit non‐volatile write‐once read‐many‐times (WORM) characteristics with high stability in retention time up to 104 s and a low switch on voltage. This switching behaviour is explained by different stable conformations of ODCzMSi with high or low conductivity states which are obtained under the action of electric field through a π–π stacking alignment of the pendant aromatic groups. These results with both PhOLEDs and memory devices demonstrate that this oligosiloxane–mCP hybrid structure is promising and versatile for high performance solution‐processed optoelectronic applications.  相似文献   
172.
Primary alkyl amines (RNH2) have been empirically used to engineer various colloidal semiconductor nanocrystals (NCs). Here, we present a general mechanism in which the amine acts as a hydrogen/proton donor in the precursor conversion to nanocrystals at low temperature, which was assisted by the presence of a secondary phosphine. Our findings introduce the strategy of using a secondary phosphine together with a primary amine as new routes to prepare high‐quality NCs at low reaction temperatures but with high particle yields and reproducibility and thus, potentially, low production costs.  相似文献   
173.
A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host–guest interactions of poly(N‐isopropylacrylamide) (PNIPAM) with side‐chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST=lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM–CBPQT4+ host–guest complex. When heated above the transition temperature, the polymer collapses, and the host–guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.  相似文献   
174.
175.
Biomimetic polymer composites with water‐active mechanically adaptive and shape‐memory behaviour in different pH environments are synthesised by using chitosan‐modified cellulose whiskers (CS‐CWs) as the stimulus‐responsive phase and thermoplastic polyurethane (TPU) as the resilient matrix. The effect of surface modification on the mechanically adaptive behaviour of CS‐CW/TPU composites is investigated by using three representative solutions with various pH values. The results show that surface modification significantly enhances the modulus contrast under wet and dry conditions with the acidic solution as the stimulus, while maintaining the high modulus contrast with the basic solution as the stimulus. CS‐CW/TPU composites also exhibit excellent shape‐memory effects in all three solutions that are comparable to those pristine CW/TPU composites. Furthermore, activation of force generation in the stretched CS‐CW/TPU composites by water absorption/desorption was observed.  相似文献   
176.
177.
The traditional processing technology of shape memory polymer composites is complex and the cost of high performance filler is high. Therefore, low-cost high density polyethylene (HDPE) was introduced into trans-1,4-polyisoprene (TPI) matrix as reinforcing phase, and a novel shape memory polymer was prepared by mechanical melt blending, which fully exerted the excellent properties of plastic and rubber. Because of the difference in molecular chain distribution between different blend ratios of TPI/HDPE hybrid SMPCs specimens, the change of the blend ratio of the two components affects the thermodynamic and shape memory properties of the SMPCs. A series experimental results show that the TPI/HDPE hybrid SMPCs with the blend ratio of 80/20 has excellent thermodynamic and shape memory properties. And we believe that the relevant conclusions of this study can provide valuable design reference for the development of high-performance TPI SMPCs.  相似文献   
178.
The structure and properties of two-dimensional phosphoborane sheets were computationally investigated using Density Functional Theory calculations. The calculated phonon spectrum and band structure point to dynamic stability and allowed characterization of the predicted two-dimensional material as a direct-gap semiconductor with a band gap of ~1.5 eV. The calculation of the optical properties showed that the two-dimensional material has a relatively small absorptivity coefficient. The parameters of the mechanical properties characterize the two-dimensional phosphoborane as a relatively soft material, similar to the monolayer of MoS2. Assessment of thermal stability by the method of molecular dynamics indicates sufficient stability of the predicted material, which makes it possible to observe it experimentally.  相似文献   
179.
Shape memory polyurethanes (SMPUs) have attracted much attention in the biomedical field because they can easily control the transition temperature (Ttrans) to shape memory and are biocompatible. In this study, a shape memory polyurethane with both biocompatibility and a Ttrans close to the body temperature was synthesized by using natural derivatives of isosorbide and castor oil in place of petroleum-based materials. Isosorbide and castor oil were used to form net points, and polycaprolactone diol (PCL diol) acted as the switching segment. The synthesized four polyurethane (PCL diol/isosorbide/castor oil, PICU-1, 2, 3, 4) with different isosorbide contents exhibited desired thermal and mechanical properties. In the thermo-cyclic shape memory testing experiment, the PICU series demonstrated good shape memory property, with more than 95% shape recovery ratio (Rr) and more than 90% shape fixity ratio (Rf), and PICU-3 recovered its shape within 20 s in a 37 °C water bath. In addition, the PICU series proved to be safe materials with excellent biocompatibility, as indicated by the observed C2C12 cells viability and proliferation. The stent made with the PICU-3 film showed near complete magnetization at 37 °C within 18 s and proved to be a suitable self-expanding stent.  相似文献   
180.
Due to their special polar structure, amphiphilic molecules are simple to process, low in cost and excellent in material properties. Thus, they can be widely applied in the preparation of functional film materials and bionics related to cell membranes. Therefore, amphiphilic organic semiconductor materials are receiving increasing attention in research and industrial fields. The structure of organic amphiphilic semiconductor molecules usually consists of three functional parts: a hydrophilic group, a hydrophobic group, and a linking group between them. The adjustment of their correlation to achieve the target performance is particularly important and needs experimental discussion regarding synthetic methodologies. In this work, we focused on the engineering of a substituent alkyl-chain, and an amphiphilic functional molecule (benzo[b]benzo[4, 5] thieno[2, 3-d]thiophene, named CnPA-BTBT, n = 3–11) was proposed and synthesized. This molecule links the hydrophobic semiconductor backbone and hydrophilic polar group through alkyl chains of different lengths. Fundamental properties were investigated by nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopy (UV-Vis) to conform the structure and the band gap properties of the designed organic semiconductor. Thermodynamic features were investigated by thermogravimetric analysis (TGA) and corresponding differential thermal gravity (DTG), which indicate that the functional molecule CnPA-BTBT (n = 3–11) has a great stability in ambient conditions. Moreover, the results show that the binding ability of the amphiphilic molecule to water molecules was regulated by the odd-even alternating effect of the alkyl chain and the intramolecular coupling with BTBT. Furthermore, differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to study the material properties in detail. As the length of the alkyl chain increased, the functional molecule CnPA-BTBT (n = 3–11) gradually changed from "hard" species with no thermodynamic changes to a transition one with a pair of thermodynamic peaks, and eventually to a "soft" one as a typical liquid crystal with clear observation of Maltese-cross spherulites. The cooling and freezing points were further studied, and the values and trends of their enthalpy and corresponding temperature fluctuated and alternated due to the volume effect, odd-even alternating effect, flexibility, and other functions of the alkyl chain. Three molecular models were proposed according to the thermodynamic study results, namely the brick-like model, transition model, and liquid crystal model. This work presents in-depth discussion on material structure and corresponding thermodynamic properties, and it is an experimental basis for the design, synthesis, optimization, and screening of target performance materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号