首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33714篇
  免费   4665篇
  国内免费   3496篇
化学   19651篇
晶体学   621篇
力学   2878篇
综合类   370篇
数学   6526篇
物理学   11829篇
  2024年   85篇
  2023年   299篇
  2022年   717篇
  2021年   793篇
  2020年   1044篇
  2019年   1001篇
  2018年   990篇
  2017年   1197篇
  2016年   1502篇
  2015年   1253篇
  2014年   1506篇
  2013年   3342篇
  2012年   1942篇
  2011年   1967篇
  2010年   1679篇
  2009年   1899篇
  2008年   1983篇
  2007年   2035篇
  2006年   1857篇
  2005年   1610篇
  2004年   1587篇
  2003年   1391篇
  2002年   1483篇
  2001年   1083篇
  2000年   1079篇
  1999年   956篇
  1998年   801篇
  1997年   657篇
  1996年   586篇
  1995年   596篇
  1994年   458篇
  1993年   398篇
  1992年   340篇
  1991年   278篇
  1990年   224篇
  1989年   170篇
  1988年   167篇
  1987年   149篇
  1986年   134篇
  1985年   121篇
  1984年   116篇
  1983年   57篇
  1982年   79篇
  1981年   52篇
  1980年   54篇
  1979年   55篇
  1978年   20篇
  1977年   22篇
  1976年   13篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We report a strong dependence of the thermal stability of Nafion® perfluorosulfonate ionomer on the nature of the counterion associated with the fixed sulfonate site. These results were obtained using thermal gravimetric analysis on a series of alkali metal and alkyl ammonium cation-exchanged Nafion films. We have found that the temperature of decomposition of Nafion is inversely dependent on the size of the exchanged cation; i.e., Nafion films show improved thermal stability as the size of the counter cation decreases. We attribute this inverse relationship of thermal stability with counterion size to an initial decomposition reaction which is strongly influenced by the strength of the sulfonate-coun-terion interaction. © 1993 John Wiley & Sons, Inc.  相似文献   
2.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   
3.
This paper analyzes the extent to which standard dynamic renewable resource models possess refutable implications. Both the steady state comparative static and local comparative dynamic properties of the standard model are studied. A unified framework is developed which enables one to analyze the qualitative properties of any standard renewable resource model. This is achieved by explicitly linking the local stability, steady state comparative static, and local comparative dynamic properties of the model.  相似文献   
4.
A racemic amphiphilic monomer, n‐dodecyl glyceryl itaconate (DGI), forms bilayer membranes in water in the presence of small amount of ionic cosurfactant and shows iridescent color. A chiral DGI, S‐DGI, also shows an iridescent property, but with a rather red shift in the color, which can be ascribed to the increased packing density of the monomer in the bilayer membranes. Chrial DGI has a more compact packing density than racemic one owing to closer distance between the monomer molecules; the conversion rate, however, is slower than that of racemic one when H2O2 is used as an initiator. When the initiator is changed to an amphiphilic one, 4‐(2‐hydroxyethoxy) phenyl‐(2‐hydroxy‐2‐propyl) ketone (Irgacure 2959), the chiral DGI shows even a little faster conversion rate than that of racemic one. The NMR chemical shift results of protons in benzene ring show that the molecules of Irgacure 2959 insert into the bilayer membranes. The molecular weights of the corresponding polymers prove that the initiation by H2O2 is restricted compared to that by Irgacure 2959. It is concluded that the decelerated polymerization behavior of chiral DGI initiated by H2O2 is a result of limited diffusion of the initiator into the lamellar bilayer structures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4891–4900, 2007  相似文献   
5.
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007  相似文献   
6.
Summary Characteristics of optimal solutions under nonlinear buckling constraints are investigated by using a bar-spring model. It is demonstrated that optimization under buckling constraints of a symmetric system often leads to a structure with hill-top branching, where a limit point and bifurcation points coincide. A general formulation is derived for imperfection sensitivity of the critical load factor corresponding to a hill-top branching point. It is shown that the critical load is not imperfection-sensitive even for the case where an asymmetric bifurcation point exists at the limit point.  相似文献   
7.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   
8.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004  相似文献   
10.
A new type of methacrylate monomer, [2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate (APEMA), was synthesized. The oxime, 2,4‐dinitrophenylhydrazone, and thiosemicarbazone derivatives of poly{[2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate} [poly(APEMA)] were prepared with hydroxylamine hydrochloride, 2,4‐dinitrophenylhydrazine, and thiosemicarbazone hydrochloride, respectively. The radical homopolymerization of APEMA was performed at 65 °C in a 1,4‐dioxane solution with benzoyl peroxide as an initiator. The monomer and its homopolymer were characterized with Fourier transform infrared and NMR techniques. The thermal stabilities of poly(APEMA) and its derivatives were investigated with thermogravimetric analysis and differential scanning calorimetry. The ultraviolet stability of the polymers were compared. The solubility and inherent viscosity of the polymers were also determined. The number‐average and weight‐average molecular weights and polydispersity index of the polymers were determined with gel permeation chromatography. The antibacterial and antifungal effects of the monomer and the polymer and its derivatives were also investigated on various bacteria and fungi. The activation energies of the thermal degradation of the polymers were calculated with the Ozawa method. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3157–3169, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号