首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2977篇
  免费   477篇
  国内免费   62篇
化学   236篇
晶体学   8篇
力学   803篇
综合类   32篇
数学   371篇
物理学   2066篇
  2025年   13篇
  2024年   48篇
  2023年   57篇
  2022年   67篇
  2021年   74篇
  2020年   87篇
  2019年   104篇
  2018年   91篇
  2017年   86篇
  2016年   100篇
  2015年   103篇
  2014年   189篇
  2013年   169篇
  2012年   150篇
  2011年   211篇
  2010年   155篇
  2009年   191篇
  2008年   174篇
  2007年   165篇
  2006年   119篇
  2005年   144篇
  2004年   109篇
  2003年   134篇
  2002年   139篇
  2001年   76篇
  2000年   76篇
  1999年   71篇
  1998年   66篇
  1997年   48篇
  1996年   49篇
  1995年   38篇
  1994年   29篇
  1993年   23篇
  1992年   25篇
  1991年   18篇
  1990年   17篇
  1989年   27篇
  1988年   10篇
  1987年   12篇
  1986年   9篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1973年   2篇
  1971年   2篇
排序方式: 共有3516条查询结果,搜索用时 15 毫秒
51.
Nowadays, quantification of the effects of basic parameters such as precursor, temperature oxidation, residence time, low temperature carbonization (LTC) and high temperature carbonization (HTC) on production process polyacrylonitrile based carbon fibers is not completely understood. In this way, there is not a completely theoretical model that accomplishes to quantitatively describe production process carbon fibers very accurately which needs to be used by engineers in design, simulation and operation of that process. This paper presents the development of a back propagation neural network model for the prediction of carbon fibers produced from PAN fibers. The model is based on experimental data. The precursors, temperature oxidation, residence time, LTC and HTC have been considered as the input parameters and the strength as output parameter to develop the model. The developed model is then compared with experimental results and it is found that the results obtained from the neural network model are accurate in predicting the strength of carbon fibers.  相似文献   
52.
The effect of LiClO4 on the polymerization of di-2-[2-(2-methoxyethoxy)ethoxy]ethyl itaconate (DMEI) with dimethyl 2,2′-azobisisobutyrate (MAIB) was investigated in methyl ethyl ketone (MEK) kinetically and by ESR. The polymerization rate (Rp) at 50°C, where the concentrations of DMEI and MAIB were 1.00 and 5.00 × 10−2 mol/L, increased with increasing [LiClO4]. Marked acceleration was observed at higher [LiClO4]s than 1.0 mol/L. The molecular weight of resulting polymer (ca. 10,000) was relatively insensitive to [LiClO4], indicating occurrence of chain transfer. IR analysis of mixtures of LiClO4/DMEI and LiClO4/poly(DMEI) indicated complexation of LiClO4 with DMEI and its polymer. The rate constants of propagation (kp) and termination (kt) were determined by ESR. kp (1.7–10.5 L/mol s at 50°C) increased with [LiClO4]. kt (5.2–1.0 × 104 L/mol s at 50°C) showed remarkable decrease at higher [LiClO4]s than 1.0 mol/L. Rp of polymerization of equimolar complex of LiClO4/DMEI with MAIB at 50°C in MEK was expressed by Rp = k[MAIB]0.5[DMEI]2.4. kp increased and kt decreased with [DMEI]. The activation energies of overall polymerization, propagation and termination were estimated to be 34.5, 8.0, and 59.4 kJ/mol. Copolymerization of DMEI with styrene was also profoundly affected by the presence of LiClO4. Such large effects of LiClO4 on the homo- and copolymerization of DMEI are explicable in term of association of LiClO4-complexed DMEI monomers. © 1997 John Wiley & Sons, Inc.  相似文献   
53.
We study a curvature-dependent motion of plane curves in a two-dimensional infinite cylinder with spatially undulating boundary. The law of motion is given by V=κ+AV=κ+A, where V is the normal velocity of the curve, κ is the curvature, and A is a positive constant. The boundary undulation is assumed to be almost periodic, or, more generally, recurrent in a certain sense. We first introduce the definition of recurrent traveling waves and establish a necessary and sufficient condition for the existence of such traveling waves. We then show that the traveling wave is asymptotically stable if it exists. Next we show that a regular traveling wave has a well-defined average speed if the boundary shape is strictly ergodic. Finally we study what we call “virtual pinning”, which means that the traveling wave propagates over the entire cylinder with zero average speed. Such a peculiar situation can occur only in non-periodic environments and never occurs if the boundary undulation is periodic.  相似文献   
54.
We investigate vibrational resonance in two different nonlinear maps driven by a biharmonic force: the Bellows and the Rulkov map. These two maps possess dynamical features of particular interest for the study of these phenomena. In both maps, the resonance occurs at the low-frequency of the biharmonic signal as the amplitude of the high-frequency signal is varied. We also consider an array of unidirectionally coupled maps with the forcing signal applied to the first unit. In this case, a signal propagation with several interesting features above a critical value of the coupling strength is found, while the response amplitude of the ith unit is greater than the first one. This response evolves in a sigmoidal fashion with the system number i, meaning that at some point the amplitudes saturate. The unidirectional coupling acts as a low-pass filter for distant units. Moreover, the analysis of the mean residence time of the trajectory in a given region of the phase space unveils a multiresonance mechanism in the coupled map system. These results point at the relevance of the discrete-time models for the study of resonance phenomena, since analyses and simulations are much easier than for continuous-time models.  相似文献   
55.
A strip-craze model is proposed to study crack propagation in polymers. A nonlinear differential equation is derived to govern the dynamic process of crack propagation. The viscous feature of the material in the craze zone is taken into account by means of an experimentally determined relationship between the craze stress and crack speed. By fitting experimental data of PMMA into the model, some parameters including the strip-craze length are deduced. A non-singular stress is introduced to control the crack propagation with a strip craze at its tip. Variations of the crack length and the crack speed with time are computed and their dependence on the non-singular stress is investigated. For PMMA, three stages of crack propagation are identified in terms of initial non-singular stress σns0. When σns0<60 MPa, the crack speed mm/s and the crack is basically stationary; when 60 <σns0<95 MPa, then mm/s the crack is in slow propagation; when σns0>95 MPa, then mm/s and the crack is in rapid propagation. The proposed model is applicable only in slow crack propagation.  相似文献   
56.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   
57.
Block matrices associated with discrete Trigonometric transforms (DTT's) arise in the mathematical modelling of several applications of wave propagation theory including discretizations of scatterers and radiators with the Method of Moments, the Boundary Element Method, and the Method of Auxiliary Sources. The DTT's are represented by the Fourier, Hartley, Cosine, and Sine matrices, which are unitary and offer simultaneous diagonalizations of specific matrix algebras. The main tool for the investigation of the aforementioned wave applications is the efficient inversion of such types of block matrices. To this direction, in this paper we develop an efficient algorithm for the inversion of matrices with U-diagonalizable blocks (U a fixed unitary matrix) by utilizing the U- diagonalization of each block and subsequently a similarity transformation procedure. We determine the developed method's computational complexity and point out its high efficiency compared to standard inversion techniques. An implementation of the algorithm in Matlab is given. Several numerical results are presented demonstrating the CPU-time efficiency and accuracy for ill-conditioned matrices of the method. The investigated matrices stem from real-world wave propagation applications.  相似文献   
58.
59.
The effect of liquid on the propagation of waves in a micropolar elastic layer with stretch has been investigated. The frequency and wave velocity equations for symmetric and antisymmetric vibrations are derived. Propagation of monochromatic waves in a micropolar elastic layer with stretch is discussed. Results of this analysis reduce to those without stretch.  相似文献   
60.
In this paper, we study the Degasperis-Procesi equation with a physically perturbation term—a linear dispersion. Based on the global existence result, we show that the solution of the Degasperis-Procesi equation with linear dispersion tends to the solution of the corresponding Degasperis-Procesi equation as the dispersive parameter goes to zero. Moreover, we prove that smooth solutions of the equation have finite propagation speed: they will have compact support if its initial data has this property.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号