排序方式: 共有179条查询结果,搜索用时 15 毫秒
71.
The electronic and transport properties of monolayer and AB-stacked bilayer zigzag graphene nanoribbons subject to the influences of a magnetic field are investigated theoretically. We demonstrate that the magnetic confinement and the size effect affect the electronic properties competitively. In the limit of a strong magnetic field, the magnetic length is much smaller than the ribbon width, and the bulk electrons are confined solely by the magnetic potential. Their properties are independent of the width, and the Landau levels appear. On the other hand, the size effect dominates in the case of narrow ribbons. In addition, the dispersion relations rely sensitively on the interlayer interactions. Such interactions will modify the subband curvature, create additional band-edge states, change the subband spacing or the energy gap, and separate the partial flat bands. The band structures are symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The chemical-potential-dependent electrical and thermal conductance exhibits a stepwise increase behaviour. The competition between the magnetic confinement and the size effect will also be reflected in the transport properties. The features of the conductance are found to be strongly dependent on the field strength, number of layers, interlayer interactions, and temperature. 相似文献
72.
73.
直接甲醇燃料电池电催化剂载体碳纳米带的合成与表征 总被引:2,自引:0,他引:2
以间苯二酚和甲醛为碳前体,合成了一种新型碳纳米材料碳纳米带(CNRs), 并采用透射电镜(TEM)、 X射线衍射(XRD)及氮气吸附/脱附测试对CNRs进行了结构表征. 结果表明,所合成的CNRs具有很高的石墨化程度及较规则的带状结构,带宽约为8~20 nm, BET比表面积为283 m2/g, 氮气等温线为type-Ⅳ型,表明CNRs为中孔结构,平均孔径约为8.2 nm. 以CNRs为载体通过多元醇法制备了45%PtRu/CNRs电催化剂,该催化剂与以Vulcan XC-72R为载体的PtRu电催化剂相比,直接甲醇燃料电池单池性能得到明显提高. 相似文献
74.
从动势能转换与守恒原理出发,在微正则(NVE)系综下,采用COMPASS力场对石墨烯纳米带及其应变传感器的谐振特性进行了分子动力学模拟.研究发现,非线性响应主导了石墨烯纳米带的动态行为,而其超高的基波频率则与长度和边界条件密切相关;单轴拉伸应变对石墨烯纳米带基波频率的影响显著且强烈依赖于边界条件,四边固支型应变石墨烯纳米带具有更高的频移,其灵敏度可高达7800 Hz/nanostrain,远大于相同长度碳纳米管应变传感器的灵敏度;石墨烯纳米带及其应变传感器的谐振特性均与手性无关.本文所得结果表明,由于超低
关键词:
石墨烯纳米带
分子动力学
应变
基波频率 相似文献
75.
The effects of magnetic atom on the band structure of zigzag-edged graphene nanoribbons are investigated by the density functional theory. The results show that for narrow zigzag-edged graphene nanoribbons, the band gap can be opened duo to the spin-up/spin-down charges being re-enriched on the edge sites. However, for the wide zigzag-edged graphene nanoribbons, a spin-up/spin-down half-metallic property can be observed. Moreover, it is found that the Seebeck coefficients in the narrow zigzag-edged graphene nanoribbons are reversed and enlarged, which provides a way to design novel thermoelectric device. 相似文献
76.
Using nonequilibrium molecular dynamics method (NEMD), we have found that the thermal conductivity of multilayer graphene nanoribbons monotonously decreases with the increase of the number of layers which can be attributed to the phonon resonance effect of out-of-plane phonon modes. The reduction of thermal conductivity is proportional to the layer size, which is caused by the increase of phonon resonance. The results clearly show the dimensional evolution of thermal conductivity from quasi-one dimension to higher dimensions in graphene nanoribbons. 相似文献
77.
We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. 相似文献
78.
79.
Pang Qi Zhao Li-juan Ge Wei-kun Wang Jian-nong Fang Yue-ping Wen Xiao-gang Yang Shi-he 《Frontiers of Physics in China》2006,1(4):442-445
The vertically aligned and hexagonal ZnSe nanoribbon array can be easily obtained by heating ZnSe: 0.38 en precursors (en
= ethylenediamine), while ZnSe precursor nanoribbon arrays are grown directly on Zn foils in en using the solvothermal method.
The nanoribbons are mostly about 4 nm in thickness, 100–300 nm in width, and 2 μm in length. The characteristics observed
using scanning electron microscopy and X-ray diffraction indicate that the ZnSe precursor as well as ZnSe nanoribbons are
vertically aligned on almost the whole zinc foil surface and form a large-scale uniform array. Particularly, ZnSe precursor
nanoribbons are hybrid materials of ZnSe and en, while ZnSe nanoribbons are in the from of hexagonal structures. Possible
growth mechanisms of the ZnSe precursor nanoribbon arrays are also proposed. 相似文献
80.
Using nonequilibrium Green?s functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons. 相似文献