排序方式: 共有187条查询结果,搜索用时 0 毫秒
11.
Feng-Lin Shyu 《Physics letters. A》2019,383(1):68-75
Electronic and optical properties of armchair stanene nanoribbons are studied within the tight-binding model including spin-orbit coupling in the presence of in-plane electric field. Electric field strongly modulates energy dispersions leading to a zero-gap transition, shift in edge-states, and exhibition of spin-splitting states. Then, the complex dielectric functions in the long wavelength limit is calculated from the gradient approximation. More field-induced transition channels exhibit richer optical spectra which further reveal spin-polarized feature at low frequency. Prominent plasmons in loss spectra come from π–σ mixing orbital. The plasmon peak frequency and height are tuned by field strength. Also, the threshold plasmon frequency linearly decreases as electric field increases and it vanishes at critical field. The reflectance exhibits oscillatory behaviors and shows dip structures with sharp plasmon edge, undergoing a red-shift with increasing field. The calculated results fully show that field-modulations of electronic and optical properties strongly depend on nanoribbon's geometry. 相似文献
12.
By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs. 相似文献
13.
《Physics letters. A》2020,384(28):126732
In this work, we investigate the electronic transport properties of M/SiC Schottky junctions (M=Ag, Au and Pd). The results show that the band structures of hydrogenated zigzag SiC nanoribbons (ZSiCNRs) and hydrogenated armchair SiC nanoribbons (ASiCNRs) are almost unaffected by their width changes. When the hydrogenated 7-ASiCNR is directly connected to the Ag, Au and Pd electrode, the transmission spectra of three metal-semiconductor junctions show that the Fermi level of metal is pinned to a fixed position in the semiconductor band gap of hydrogenated 7-ASiCNR. The nearly same rectifying current-voltage characteristics are found in three metal-semiconductor junctions. The average rectification ratios of three M/SiC Schottky junctions are all in the neighborhood of 106. In other word, the M/SiC Schottky junction has remarkable application prospect as the candidate for Schottky Diode. 相似文献
14.
15.
By applying the nonequilibrium Green?s function formalism combined with density functional theory, we have investigated the electronic transport properties of two nitrogen-doped armchair graphene nanoribbon-based junctions M1 and M2. In the left part of M1 and M2, nitrogen atoms are doped at two edges of the nanoribbon. In the right part, nitrogen atoms are doped at one edge and at the center for M1 and M2, respectively. Obvious rectifying and negative differential resistance behaviors are found, which are strongly dependent on the doping position. The maximum rectification and peak-to-valley ratios are up to the order of 104 in M2. 相似文献
16.
Haitao Li Baozong Li Yuanli Chen Ming Zhang Sibing Wang Yi Li Yonggang Yang 《中国化学》2009,27(10):1860-1862
17.
18.
The optical absorption spectra of curved graphene nanoribbons exhibit rich dependence on the magnitude and direction of the electric field. The wave functions have spatial symmetry originating from the equivalence of the two sublattices. There exists an optical selection rule caused by the special structure of the Hamiltonian matrix and the wave function spatial symmetry. An electric field may or may not disrupt such spatial symmetry depending on its direction and magnitude. Therefore, the optical selection rule can be controlled. In addition, the two-fold degeneracy of the optical absorption peaks is lifted by the electric field, and the variations of the absorption peak energies with the field are explored. 相似文献
19.
A biosensor device,built from graphene nanoribbons(GNRs) with nanopores,was designed and studied by firstprinciples quantum transport simulation.We have demonstrated the intrinsic transport properties of the device and the effect of different nucleobases on device properties when they are located in the nanopores of GNRs.It was found that the device’s current changes remarkably with the species of nucleobases,which originates from their different chemical compositions and coupling strengths with GNRs.In addition,our first-principles results clearly reveal that the distinguished ability of a device’s current depends on the position of the pore to some extent.These results may present a new way to read off the nucleobases sequence of a single-stranded DNA(ssDNA) molecule by such GNRs-based device with designed nanopores 相似文献
20.
本文采用密度泛函理论和非格林平衡函数,对基于石墨烯电极的7,7,8,8-四氰基苯醌二甲烷(Tetracyanoquinodimethane, TCNQ)分子结热/电输运性质进行系统研究.研究结果表明:随着中心TCNQ分子个数的增加,声子透射系数明显降低,即声子透射行为受到极大抑制.与此同时,电子透射系数也有一定程度的减小.在热/电参数的协同作用下,伴随分子数量的增加分子结热电转换性能呈上升趋势,1TCNQ热电优值(ZT)为0.016,而2TCNQ则上升了1个数量级,ZT值达到0.11.最后,我们对分子结依赖于分子结构个数的自旋输运性质进行研究,发现TCNQ分子结具有显著的自旋过滤效应,其过滤能力随着TCNQ分子数量的增加而增加.该工作可为实验制备分子热电器件提供理论依据和数据支持. 相似文献