全文获取类型
收费全文 | 13218篇 |
免费 | 2036篇 |
国内免费 | 1249篇 |
专业分类
化学 | 12134篇 |
晶体学 | 109篇 |
力学 | 490篇 |
综合类 | 66篇 |
数学 | 486篇 |
物理学 | 3218篇 |
出版年
2024年 | 36篇 |
2023年 | 223篇 |
2022年 | 616篇 |
2021年 | 661篇 |
2020年 | 857篇 |
2019年 | 701篇 |
2018年 | 603篇 |
2017年 | 693篇 |
2016年 | 937篇 |
2015年 | 886篇 |
2014年 | 1011篇 |
2013年 | 1217篇 |
2012年 | 1062篇 |
2011年 | 1058篇 |
2010年 | 839篇 |
2009年 | 827篇 |
2008年 | 732篇 |
2007年 | 684篇 |
2006年 | 565篇 |
2005年 | 467篇 |
2004年 | 357篇 |
2003年 | 361篇 |
2002年 | 248篇 |
2001年 | 202篇 |
2000年 | 150篇 |
1999年 | 108篇 |
1998年 | 78篇 |
1997年 | 73篇 |
1996年 | 41篇 |
1995年 | 47篇 |
1994年 | 33篇 |
1993年 | 14篇 |
1992年 | 14篇 |
1991年 | 18篇 |
1990年 | 21篇 |
1989年 | 9篇 |
1988年 | 11篇 |
1987年 | 6篇 |
1986年 | 6篇 |
1985年 | 6篇 |
1984年 | 4篇 |
1983年 | 8篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1963年 | 1篇 |
1959年 | 1篇 |
1936年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Benedict Ita P. Murugavel V. Ponnambalam A. R. Raju 《Journal of Chemical Sciences》2003,115(5-6):519-524
Fine powders of lanthanum iron oxide, LaFeO3, have been prepared by solid state reaction as well as sol-gel synthesis and nebulized spray pyrolysis. Structures, morphologies
and magnetic susceptibility measurements of these powders have been examined. The powders prepared by all the three low-temperature
routes contain nearly spherical particles with an average diameter of 40 nm. These samples show a lower Neel temperature than
the powder prepared by solid state reaction besides showing much lower magnetic susceptibility at low temperatures.
Dedicated to Professor C N R Rao on his 70th birthday 相似文献
12.
Hyeong Taek Ham Yeong Suk Choi Mu Guen Chee In Jae Chung 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):573-584
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006 相似文献
13.
Rachel K. O'Reilly Maisie J. Joralemon Craig J. Hawker Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2006,44(17):5203-5217
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006 相似文献
14.
Kozo Matsumoto Junichi Nakashita Hideki Matsuoka 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4696-4707
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006 相似文献
15.
Dilyana Paneva Laetitia Mespouille Nevena Manolova Philippe Dege Iliya Rashkov Philippe Dubois 《Journal of polymer science. Part A, Polymer chemistry》2006,44(19):5468-5479
Polyelectrolyte complexes (PECs) have been prepared from well‐defined (quaternized) poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and high molecular weight poly(2‐acrylamido‐2‐methylpropane sodium sulfonate) (PAMPSNa) after a thorough study of their viscometric properties. The effect of pH and quaternization degree of PDMAEMA on PECs stoichiometry has been examined. PEC‐based materials have been characterized in terms of thermal stability, equilibrium swelling degree, and free/bound water composition. The stoichiometry and swellability of the physically crosslinked hydrogels obtained from fully quaternized PDMAEMA/PAMPSNa complexes do not depend on pH. In contrast, PECs made of non quaternized PDMAEMA and PAMPSNa are highly affected by pH, and could reversibly disintegrate at pH ≥ 9. Partially quaternized PDMAEMA/PAMPSNa PECs exhibit intermediate properties and form stable loose structures in the whole investigated pH range. Finally, stable dispersions of PECs nanoparticles have been successfully produced from dilute solutions of the complementary polyelectrolytes. The nanoparticle average diameter as determined by dynamic light scattering proved to depend on the molar fraction of DMAEMA‐based subunits and on the initial polyelectrolyte concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5468–5479, 2006 相似文献
16.
Zhicheng Xiao Ying Li Dongling Ma Linda S. Schadler Yvonne A. Akpalu 《Journal of Polymer Science.Polymer Physics》2006,44(7):1084-1095
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006 相似文献
17.
A novel method for the determination of proteins in aqueous solutions has been developed based on the enhancement of resonance light scattering (RLS) of Ag nanoparticles in the presence of proteins. Factors including acidity of the media, concentration of Ag hydrosol, reaction time, temperature, and interference of non-protein substances were investigated. Under the optimal conditions, with the enhanced RLS signals at 452nm, the linear ranges of calibration curves were 0–0.8µgmL–1 for bovine serum albumin (BSA), 0–1.2µgmL–1 for human serum albumin (HSA), and 0–2.5µgmL–1 for human -IgG (-IgG), respectively. The detection limits were 1.3ngmL–1 for BSA, 10ngmL–1 for HAS, and 5.7ngmL–1 for -IgG.This method has been applied to the analysis of synthetic samples and real human serum samples, and the results were in good agreement with those reported by the hospital, indicating that the method presented here is not only sensitive and simple, but also reliable and suitable for practical applications. 相似文献
18.
Fu-Ken Liu 《Analytica chimica acta》2005,528(2):249-254
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of nanometer-scale gold particles. We characterized the gold nanoparticles by effecting CE separation using a buffer of SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 11.0 and an applied voltage of 18 kV and obtained a linear relationship (R2 > 0.99) between electrophoretic mobilities and size for nanoparticles whose diameters fall in the regime from 5.0 ± 0.5 to 41.2 ± 3.3 nm; the relative standard deviations of these electrophoretic mobilities are <0.8%. We evaluated the feasibility of employing these separation conditions for the size characterization by of gold nanoparticle samples that were synthesized by a rapid microwave heating method. We confirmed that this CE method is a valid one for size characterization by comparing the results obtained by CE with those provided by scanning electron microscopy (SEM); a good correlation exists between these two techniques. Our results demonstrate that CE can be employed to accelerate the analysis of the sizes of nanomaterials. 相似文献
19.
G. Kuncova J. Szilva J. Hetflejs S. Sabata 《Journal of Sol-Gel Science and Technology》2003,26(1-3):1183-1187
A series of immobilized lipases were obtained by sol-gel process, using silica prepolymers prepared from tetramethoxysilane, methyltrimethoxysilane, propyltrimethoxysilane and (3-aminopropyl)triethoxysilane. The activities of these biocatalysts were compared with the lipase adsorbed on poly(methylhydroxysiloxane) and encapsulated into a silicone rubber, lipase entrapped in nanoporous silica matrix and commercial sol-gel lipase. Model reactions were the esterification of stearic acid and Corey lactone bisalcohol (an intermediate of prostaglandin synthesis). The positive effect of hydrophobic-hydrophilic interface, created by the addition of organosilanes, on the activity of biocatalysts was partially reduced by decreasing specific surface of mesopores. Hydrophobic solvents increased the activity of the lipase entrapped in tetramethoxysilane–methyltrimethoxysilane prepolymer in the sequence acetone < toluene < benzene < decane < hexane. The activity of silicone rubber-encapsulated biocatalysts was proportional to polymer swelling in organic solvents (hexane > toluene > acetone). 相似文献
20.
Energy storage is an important adjustment method to improve the economy and reliability of a power system. Due to the complexity of the coupling relationship of elements such as the power source, load, and energy storage in the microgrid, there are problems of insufficient performance in terms of economic operation and efficient dispatching. In view of this, this paper proposes an energy storage configuration optimization model based on reinforcement learning and battery state of health assessment. Firstly, a quantitative assessment of battery health life loss based on deep learning was performed. Secondly, on the basis of considering comprehensive energy complementarity, a two-layer optimal configuration model was designed to optimize the capacity configuration and dispatch operation. Finally, the feasibility of the proposed method in microgrid energy storage planning and operation was verified by experimentation. By integrating reinforcement learning and traditional optimization methods, the proposed method did not rely on the accurate prediction of the power supply and load and can make decisions based only on the real-time information of the microgrid. In this paper, the advantages and disadvantages of the proposed method and existing methods were analyzed, and the results show that the proposed method can effectively improve the performance of dynamic planning for energy storage in microgrids. 相似文献