首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   39篇
  国内免费   17篇
化学   18篇
力学   118篇
数学   17篇
物理学   133篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   17篇
  2012年   13篇
  2011年   22篇
  2010年   23篇
  2009年   15篇
  2008年   12篇
  2007年   21篇
  2006年   19篇
  2005年   13篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
51.
In the present study, gas jet emerging from an annular nozzle and impinging onto a cylindrical cavity is considered. The geometric configuration of the nozzle is varied in the simulations. Air is used as impinging gas while stainless steel is considered as workpiece material. Reynolds turbulence model is accommodated to account for the turbulence. A numerical scheme employing a control volume approach is used to simulate the flow field. Heat transfer characteristic and shear stress distribution around the cavity are computed. It is found that outer cone angle of the annular nozzle influences the heat transfer rates from the cavity wall. The flow structure around the cavity changes significantly with increasing cavity diameter. Moreover, increasing cavity depth results in stagnation zone moving into the cavity.  相似文献   
52.
Turbulent free jets issuing from five different nozzle geometries; smooth pipe, contracted circular, rectangular, triangular, and square, are experimentally investigated by using TSI 2-D laser Doppler velocimetry (LDV) to assess the effect of nozzle geometry and quarl (i.e. a cylindrical sudden expansion) on jet entrainment and spreading. The centerline mean velocity decay and the jet half-velocity width, which are indicators of jet entrainment and spreading rates, are determined for each nozzle’s flow configuration, i.e. with and without sudden expansion. Furthermore, turbulence quantities, such as the flow mean velocities and their mean fluctuating components, as well as Reynolds shear stresses, are all measured along the centerline plane of the jet to facilitate understanding the extent of the effect of nozzle’s geometry (i.e. nozzle’s orifice shape and sudden expansion) on jet’s entrainment and spreading. The main results show that the jet flow with the presence of sudden expansion exhibits higher rates of entrainment and spreading than without. In addition, these results reveal that sudden expansion exercises a greater effect on the asymmetric jet characteristics, especially for the triangular and rectangular nozzles compared to their axisymmetric counterparts (i.e. circular contracted nozzle).  相似文献   
53.
Mono-disperse polycarbonate (PC) nanoparticles 20 nm in diameter was spray coated on silicon substrate using a novel high-frequency ultrasonic nozzle. Specifically, Bisphenol-A polycarbonate with a molecular weight (Mw) of approximately 6.4 × 104 g/mol was first dissolved in pyridine. The resulting solution was sprayed into surfactant-containing de-ionized (DI) water using a 300 kHz silicon-based multiple-Fourier horn nozzle (MFHN). As pyridine was extracted into the water, PC nanoparticles formed but remained dispersed. This suspension of PC nanoparticles was then sprayed onto a silicon substrate using a 500 kHz 3-Fourier horn nozzle. Scanning electron microscopy (SEM) of the dried substrate revealed that PC nanoparticles were spread uniformly with no aggregation.  相似文献   
54.
The problem of determining the optimal contour of a two-dimensional jet engine outlet system was solved in [1] using the direct method of the calculus of variations. In this study the method is developed for designing the optimal contour of a three-dimensional outlet system providing maximum thrust in a given direction.  相似文献   
55.
Properties and applications of cold supersonic gas jet   总被引:1,自引:1,他引:0  
By analyzing the formation mechanism of a supersonic gas jet, a set of equations which describe the atomic beam properties were established. The influence of initial temperature, initial pressure, background gas pressure and pumping speed was discussed in detail. A simulation program was developed based on the equations, and the results under different initial conditions were obtained. The results are in good agreement with the experimental data, and suggest that, in order to get much smaller transverse momentum in collision experiments, it is necessary to lower the initial temperature and the initial pressure of the supersonic gas jet, together with increasing the pumping speed. These results are very instructive for construction of a new generation of cold supersonic gas jets.  相似文献   
56.
A new design for a gas chromatographic surface ionization detector based upon hyperthermal positive surface ionization has been developed: There were two requirements: supersonic free jet nozzle and the high work function surface of Re-oxide. This detector, which is highly sensitive in response to all organic compounds, can be operated as an universal detector with an additional selectivity towards some species that have low ionization energy, but with selectivity to a much lesser degree than a conventional surface ionization detector. The minimum detectable amount of toluene is ca. 10−12 g/s with a linearity greater than 104. Some applications are demonstrated using three examples for the analysis of different formulations: (1), terpene mixture, (2), polycyclic aromatic hydrocarbon mixture and (3), alkyl alcohol mixture.  相似文献   
57.
Abstract. Transdermal powdered drug delivery involves the propulsion of solid drug particles into the skin by means of high-speed gas-particle flow. The fluid dynamics of this technology have been investigated in devices consisting of a convergent-divergent nozzle located downstream of a bursting membrane, which serves both to initiate gas flow (functioning as the diaphragm of a shock tube) and to retain the drug particles before actuation. Pressure surveys of flow in devices with contoured nozzles of relatively low exit-to-throat area ratio and a conical nozzle of higher area ratio have indicated a starting process of approximately 200 s typical duration, followed by a quasi-steady supersonic flow. The velocity of drug particles exiting the contoured nozzles was measured at up to 1050 m/s, indicating that particle acceleration took place primarily in the quasi-steady flow. In the conical nozzle, which had larger exit area ratio, the quasi-steady nozzle flow was found to be overexpanded, resulting in a shock system within the nozzle. Particles were typically delivered by these nozzles at 400 m/s, suggesting that the starting process and the quasi-steady shock processed flow are both responsible for acceleration of the particle payload. The larger exit area of the conical nozzle tested enables drug delivery over a larger target disc, which may be advantageous. Received 12 March 2000 / Accepted 8 June 2000  相似文献   
58.
将一种新的任意长度喷管型面设计(ALN)方法应用于气动激光器喷管型面设计,在相同的喷管出口设计马赫数、喷管喉部高度及喷管扩张段长度条件下,设计了4条ALN方法喷管型面,并和一条最短长度(MLN)喷管型面作对比,采用2维气动激光器增益场仿真方法对5个喷管的小信号增益场进行仿真。计算结果表明:ALN方法可以有效地实现增益场分布的控制,选择合理的设计参数得到的喷管长度比MLN喷管更短,小信号增益更大。  相似文献   
59.
在连续波DF/HF化学激光器主喷管收缩段采用气膜冷却方式,从3维离散小孔注入氦气射流以隔离壁面和主气流。通过对3种气膜孔排布方式下喷管内主气流状态进行数值模拟研究,分析氦气与主气流之间的相互作用,比较了不同方式下主气流氟原子冻结效率及壁面冷却效果。考虑到DF/HF化学激光器主喷管结构尺寸较小,采用适当间隔的单排圆孔注入是现实可行的,并有望达到较好的冷却保护效果,从而提高激光器运转效率。  相似文献   
60.
将Anderson的两振型三温度弛豫模型和严海星整理的弛豫数据相结合,采用2维守恒型方程组对按照最小长度喷管型面设计方法设计的、面积比分别为50和20的气动激光器喷管非平衡流场进行了数值仿真。小信号增益计算结果在每个计算点都和J. S. Vamos等人针对这两种喷管的小信号增益测量试验结果符合很好,解决了传统的准1维非平衡流分析方法不能很好地和试验结果相符的问题,对气动激光器喷管性能设计提供了更精确的评估方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号