首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   39篇
  国内免费   17篇
化学   18篇
力学   118篇
数学   17篇
物理学   133篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   17篇
  2012年   13篇
  2011年   22篇
  2010年   23篇
  2009年   15篇
  2008年   12篇
  2007年   21篇
  2006年   19篇
  2005年   13篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
21.
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation effectiveness and precision, is presented for solving the acoustic radiation from a submerged infinite non-circular cylindrical shell stiffened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work,besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The effects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efficient than the existing mixed FE-BE method.  相似文献   
22.
喷嘴在分层注入过程中起到调节聚合物分子量和压力损失的作用,而多级喷嘴的结构,由于分子链的逐级剪切作用,可在保证注入粘度的同时,更大的减小压力的损失.在此基础上提出变直径多级喷嘴的几何结构,利用Fluent数值模拟软件,对单级喷嘴、等直径多级喷嘴进行数值模拟,分析不同结构喷嘴对三元复合溶液速度、压力、湍动能以及平均应变速率的影响,结果表明随着流量的增大,三种结构喷嘴的压力损失和平均应变速率均增大,合理的变直径串联喷嘴可以达到与等直径串联喷嘴相同的注入效果,同时尺寸较小,方便工程应用.  相似文献   
23.
水煤浆喷嘴热冲蚀磨损机理研究   总被引:4,自引:5,他引:4  
采用1Crl8Ni9Ti不锈钢、YG8硬质合金和Al2O3/(W,Ti)C陶瓷3种材料制备了水煤浆喷嘴,考察了其在水煤浆雾化和燃烧过程中的热冲蚀磨损机理.结果表明:喷嘴材料的硬度对水煤浆喷嘴的热冲蚀磨损行为具有重要影响;在相同条件下,高硬度的Al2O3/(W,Ti)C陶瓷喷嘴的冲蚀率最低,YG8硬质合金次之,硬度较低的1Crl8Ni9Ti不锈钢喷嘴的冲蚀率最高;在热冲蚀磨损工况下,1Crl8Ni9Ti不锈钢水煤浆喷嘴主要呈现微切削特征,YG8硬质合金水煤浆喷嘴主要呈现晶粒剥落特征,而Al2O3/(W,Ti)C陶瓷水煤浆喷嘴主要呈现研磨损伤和热崩特征.  相似文献   
24.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
25.
The starting process of the flow in a wedge-like expansion nozzle of a shock tunnel is simulated by an unsplit 2-D GRP scheme on an unstructured grid. The scheme is briefly outlined and results are presented and discussed in comparison to the experimental (shadowgraph) findings obtained by Amann. The simulated pattern of reflected and transmitted shock waves in the nozzle inlet region and inside the nozzle is found to agree well with the experimental data. Received 5 April 1996 / Accepted 16 June 1997  相似文献   
26.
宝石喷嘴是影响超高压水射流切割系统工作效率的重要部件,而宝石内部的空化直接影响射流的形成,也是宝石磨损的重要原因之一。对400 MPa压力范围内宝石孔内部的空化两相流进行了数值模拟,阐述了射流在宝石内的形成过程,分析了长径比、压力和入口形状对宝石内空化的影响,并在相应压力下对宝石喷嘴的磨损进行了实验研究。结果表明:宝石内部的空化发展程度随着长径比的增大而减弱;在一定的长径比范围内,空化可以发展到喷嘴出口,并最终使射流的初始直径小于喷嘴直径,且在此条件下当压力升高时,射流的初始直径增大;良好的入口形线可以降低空化的发展程度;宝石入口的磨损较出口更显著,空蚀和高压水的冲蚀造成了宝石孔边缘形状的破坏,这种破坏随着压力的升高而加剧,选择合适的长径比是减少冲蚀磨损的有效途径。  相似文献   
27.
针对氧碘化学激光器的金属喷管在使用过程中需加热保温且存在结构复杂、故障率高等问题,初步选择了几种可用于加工无加热喷管的非金属材料,并以kW级氧碘化学激光器为原型,以聚酰亚胺为例,对激光器运行条件下的喷管温度场进行数值模拟,以验证此种非金属无加热喷管的可行性。结果表明:与金属喷管相比,非金属喷管在不加热保温的情况下能够有效阻止热量传递,防止碘蒸气冷却凝结,满足激光器喷管的使用要求。  相似文献   
28.
Passive noise control devices for jet flows, such as chevron nozzles, have been studied for a long time due to their large application in turbofan engines. The main purpose of their usage is the reduction of low-frequency noise generation and thus decreasing the noise perceived at the far field. This work is a numerical study of acoustic noise generated by jet flow operating at Mach number 0.9 and Reynolds number 1.38 × 106, considering two chevron nozzle geometries that differ from each other by the penetration angle into the flow. The main aim was to demonstrate that Reynolds averaged Navier Stokes (RANS)-based methods are reliable means to obtain acoustical noise predictions for the industry with a considerably low computational cost. In order to achieve this objective, computational fluid dynamics (CFD) RANS simulations were performed with a cubic k-ɛ model and the acoustic noise spectrum for different angles of radiation was obtained via the Lighthill ray-tracing (LRT) method. The numerical results for the acoustic and flow fields were seen to be in reasonable agreement with the experimental data, suggesting that this methodology can be used as a fast and useful option to predict acoustic noise of jet flows from chevron nozzles.  相似文献   
29.
 在保持主气流流量和副气流中I2的流量不变的条件下,改变副气流中He的流量,数值模拟氧碘化学激光器拉伐尔喷管内的流场混合特性。结果表明,随着副气流中He的流量的增加,副气流垂直穿透主气流的深度逐渐变大,主、副气流混合状态也逐渐变好,直至氧碘气流混合均匀。  相似文献   
30.
在一300×2600mm二维双射流流化床中,采用多路压力信号采集装置,详细研究了射流气速、射流喷口管间距离、静床高度、物性参数对双射流流化床射流流动特性的影响,发现双射流从单独存在到两射流在其射流区内发生射流合并可由压力波动时间序列的功率谱主频和Hurst指数的变化定量确定,结果还表明,双射流流化床管间距减小时,射流在射流区发生合并的射流气速降低;而管间距相同时,静床高变大,射流在射流区发生合并的射流气速也降低;对于相同粒径的固体颗粒,颗粒密度增大使得射流在射流区发生合并的射流气速变大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号