首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   23篇
化学   1篇
数学   4篇
物理学   90篇
  2023年   2篇
  2022年   10篇
  2021年   7篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   12篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1988年   3篇
  1987年   1篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有95条查询结果,搜索用时 0 毫秒
21.
游波  岑理相 《物理学报》2015,64(21):210302-210302
本文研究结构化环境中非马尔科夫耗散系统在长时演化下可能出现的极限环振荡现象. 对于欧姆型谱密度环境中的二能级系统, 由于体系只允许一个束缚态模, 给定初态系统在Bloch空间的长时演化将收敛于一个极限环. 研究揭示了极限环半径与环心位置同环境谱密度函数间的关系. 对于多带光子晶体环境中的二能级系统, 由于其可以存在多个束缚态, 研究展现了系统在长时演化下可能出现的收敛于环面或周期或准周期的振荡行为. 有关环面的特征量与环境谱密度间的量化关系同样得以刻画. 论文随后讨论了两比特系统关联量在局域非马尔科夫耗散环境中长时演化可能出现的特征行为.  相似文献   
22.
    
《Physics letters. A》2020,384(5):126122
The Markovianity/non-Markovianity of two different systems are discussed by means of the quantum speed limit time and quantum Fisher information. The first system is described by a central mass particle interacts locally with its surrounding particles, while the second and third models consist of a single qubit interacts with a non-detuning Lorentzian cavity and with a thermal reservoir, respectively. For the first model, the large distance between the central particle and the surrounding particles is guaranty for a fixed quantum speed limit, while the driving time plays the central role on the fixed behavior of the quantum speed limit time. Due to the stable behavior of the quantum speed limit time and the quantum Fisher information, the exchange information between the systems and their surrounding is limited. The distance between the central mass particle and its surrounding particle plays the main role on predicating the Markovianity/non-Markovianity. For the second system the driving time is an important parameter that control on the Markovianity/non-Markovianity behavior. Finally the third model proves that non-Markovianity dynamic may increase the speed and the sensitivity of the open system.  相似文献   
23.
    
In this paper, we investigate the dynamics of a spin chain whose two end spins interact with two independent non-Markovian baths by using the non-Markovian quantum state diffusion (QSD) equation approach. Specifically, two issues about information scrambling in an open quantum system are addressed. The first issue is that tripartite mutual information (TMI) can quantify information scrambling properly via its negative value in a closed system, whether it is still suitable to indicate information scrambling in an open quantum system. We find that negative TMI is not a suitable quantifier of information scrambling in an open quantum system in some cases, while negative tripartite logarithmic negativity (TLN) is an appropriate one. The second one is that up to now almost all information scrambling in open quantum systems reported were focus on a Markovian environment, while the effect of a non-Markovian environment on information scrambling is still elusive. Our results show that the memory effect of an environment will be beneficial to information scrambling. Moreover, it is found that the environment is generally detrimental for information scrambling in the long-term, while in some cases it will be helpful for information scrambling in the short-term.  相似文献   
24.
Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect.  相似文献   
25.
We consider a system of non-interacting charged particles moving in two dimensions among fixed hard scatterers, and acted upon by a perpendicular magnetic field. Recollisions between charged particles and scatterers are unavoidable in this case. We derive from the Liouville equation for this system a generalized Boltzmann equation with infinitely long memory, but which still is analytically solvable. This kinetic equation has been earlier written down from intuitive arguments.  相似文献   
26.
    
Many natural and artificial systems are subject to some sort of delay, which can be in the form of a single discrete delay or distributed over a range of times. Here, we discuss the impact of this distribution on (thermo-)dynamical properties of time-delayed stochastic systems. To this end, we study a simple classical model with white and colored noise, and focus on the class of Gamma-distributed delays which includes a variety of distinct delay distributions typical for feedback experiments and biological systems. A physical application is a colloid subject to time-delayed feedback control, which is, in principle, experimentally realizable by co-moving optical traps. We uncover several unexpected phenomena in regard to the system’s linear stability and its thermodynamic properties. First, increasing the mean delay time can destabilize or stabilize the process, depending on the distribution of the delay. Second, for all considered distributions, the heat dissipated by the controlled system (e.g., the colloidal particle) can become negative, which implies that the delay force extracts energy and entropy of the bath. As we show here, this refrigerating effect is particularly pronounced for exponential delay. For a specific non-reciprocal realization of a control device, we find that the entropic costs, measured by the total entropy production of the system plus controller, are the lowest for exponential delay. The exponential delay further yields the largest stable parameter regions. In this sense, exponential delay represents the most effective and robust type of delayed feedback.  相似文献   
27.
    
A general approach to the construction of non-Markovian quantum theory is proposed. Non-Markovian equations for quantum observables and states are suggested by using general fractional calculus. In the proposed approach, the non-locality in time is represented by operator kernels of the Sonin type. A wide class of the exactly solvable models of non-Markovian quantum dynamics is suggested. These models describe open (non-Hamiltonian) quantum systems with general form of nonlocality in time. To describe these systems, the Lindblad equations for quantum observable and states are generalized by taking into account a general form of nonlocality. The non-Markovian quantum dynamics is described by using integro-differential equations with general fractional derivatives and integrals with respect to time. The exact solutions of these equations are derived by using the operational calculus that is proposed by Yu. Luchko for general fractional differential equations. Properties of bi-positivity, complete positivity, dissipativity, and generalized dissipativity in general non-Markovian quantum dynamics are discussed. Examples of a quantum oscillator and two-level quantum system with a general form of nonlocality in time are suggested.  相似文献   
28.
基于耦合超导量子比特系统模型下,在非马尔科夫环境中利用共生纠缠的方法分析了耦合系统纠缠的产生及其动力学的演化。研究了不同初始纠缠态下的纠缠猝死(ESD)和纠缠再生(ESB)现象;主要分析了系统耦合强度、库的截止频率与系统的振荡频率间的比值、温度和约瑟夫森能级差对纠缠演化的影响。结果表明:系统纠缠取决于初始纠缠态和系统的耦合强度J,并且通过调节以上非马尔科夫环境的相干参数可以延长解纠缠时间来确保量子计算过程中的应用和量子信息的实现。  相似文献   
29.
We investigate entanglement dynamics of three independent qubits each locally interacting with a zerotemperature non-Markovian reservoir. The effects of environment's amount of non-Markovianity or parameters in initial states on the three-qubit entanglement dynamics are presented in detail. It is found that the entanglement of such a system revives after a finite dark period when a proper degree of non-Markovian is present. A deep comparison to that in two-qubit system is also made.  相似文献   
30.
We prove a diffusion law for a disordered Lorentz gas obtained by modification of a model of Gates, Gerst, Kac in Ref. 1, even though the motion is not a Markovian one in the technical sense of the word.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号