首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11828篇
  免费   1438篇
  国内免费   2987篇
化学   12456篇
晶体学   248篇
力学   116篇
综合类   66篇
数学   20篇
物理学   3347篇
  2024年   36篇
  2023年   194篇
  2022年   427篇
  2021年   469篇
  2020年   704篇
  2019年   482篇
  2018年   411篇
  2017年   545篇
  2016年   665篇
  2015年   611篇
  2014年   706篇
  2013年   1163篇
  2012年   748篇
  2011年   886篇
  2010年   636篇
  2009年   747篇
  2008年   670篇
  2007年   814篇
  2006年   683篇
  2005年   624篇
  2004年   530篇
  2003年   512篇
  2002年   421篇
  2001年   310篇
  2000年   294篇
  1999年   258篇
  1998年   245篇
  1997年   229篇
  1996年   225篇
  1995年   194篇
  1994年   148篇
  1993年   143篇
  1992年   128篇
  1991年   83篇
  1990年   58篇
  1989年   52篇
  1988年   49篇
  1987年   27篇
  1986年   18篇
  1985年   19篇
  1984年   10篇
  1983年   11篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1977年   3篇
  1975年   7篇
  1974年   6篇
  1973年   8篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the fate of nitrogen functional groups present in carbonaceous materials obtained from European plum (Prunus domestica) stones and modified by ammonia-air mixture at 250 or 300 °C. Peaks have been found in the XPS patterns, corresponding to different nitrogen functional forms i.e. pyrrolic, pyridinic, pyridone, amine and chemisorbed nitrogen oxides. It has been found that the distribution of nitrogen functional forms changes as a result of the modification processes.  相似文献   
72.
Vanadium oxide thin films were prepared by sol-gel method, then subjected to Nd:YAG laser (CW, 1064 nm) radiation. The characteristics of the films were changed by varying the intensity of the laser radiation. The nanocrystalline films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). XRD revealed that above 102 W/cm2 the original xerogel structure disappears and above 129 W/cm2 the films become totally polycrystalline with an orthorhombic structure. From TEM observations, we can see that due to laser radiation, the originally fibrillar-like particles disappear and irregular shaped, layer structured V2O5 particles are created. From XPS spectra we can conclude that due to laser radiation the O/V ratio increased with higher intensities.  相似文献   
73.
The mid-infrared (1500-3800 cm−1) absorption spectrum of gaseous nitric oxide has been studied at low temperature (99 K) with a long absorption path (160 m) in order to observe weak combination, difference, and overtone bands of the NO dimer. About ten new bands were assigned with greater or lesser certainty. Combined with previous results, they lead to a set of 12 secure and 7 tentative vibrational term values for (NO)2, essentially doubling our knowledge of NO dimer vibrational states. The strongest non-fundamental bands in this region, other than the ν1 (symmetric N-O stretch) + ν5 (asymmetric N-O stretch) overtone, involve combinations of ν5 with ν3 (intermolecular stretch). Excitation of ν5 results in increased frequencies for the intermolecular modes ν2, ν3, and ν4. A new value of 155.5 cm−1 was obtained for ν4, the elusive infrared-inactive out-of-plane fundamental vibration.  相似文献   
74.
This paper describes the synthesis of indium oxide by a modified sol–gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.This revised version was published online in August 2005 with a corrected issue number.  相似文献   
75.
The ultra high vacuum chamber was developed in the Department of Nuclear Physics, University of Madras with the funding from DST, India. This UHV chamber is used to prepare nanocrystalline materials by inert gas condensation technique (IGCT). Nanocrystalline materials such as PbF2, Mn2+-doped PbF2, Sn-doped In2O3 (ITO), ZnO, Al2O3, Ag2O, CdO, CuO, ZnSe:ZnO etc., were prepared by this technique and characterized. Results of some of these materials will be presented in this paper. In solid-state207Pb NMR on PbF2 a separate signal due to the presence of grain boundary has been observed. The structural phase transition pressure during the phase transformation from the cubic phase to orthorhombic phase under high pressure shows an increase with the decrease in grain size. Presence of electronic centres in nanocrystalline PbF2 is observed from Raman studies and the same has been confirmed by photoluminescence studies. Al2O3 was prepared and56Fe ions were implanted. After implantation segregation of56Fe ions was examined by SEM. The oxidation properties of ITO were studied by HRTEM. As against the expectation of oxide coating on individual nanograins of In-Sn alloy, ITO nanograins grew into faceted nanograins on heat treatment in air and O2 atmosphere. The growth of ITO under O2 atmosphere showed pentagon symmetry. The PMN was initially prepared by solid-state reaction. Further, this PMN relaxor material will be used to convert into nanocrystalline PMN by IGCT with sputtering and will be studied  相似文献   
76.
伦志远  李云  赵凯  杜刚  刘晓彦  王漪 《中国物理 B》2016,25(8):88502-088502
In this work, the trap-assisted tunneling(TAT) mechanism is modeled as a two-step physical process for charge trapping memory(CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation.  相似文献   
77.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
78.
When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.  相似文献   
79.
In this study, we report on the mechanical properties, failure and fracture modes in two cases of engineering materials; that is transparent silicon oxide thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The first system was studied by the quazi-static indentation technique at the nano-scale and the second by the static indentation technique at the micro-scale. Nanocomposite laminates of silicon oxide thin films onto PET were found to sustain higher scratch induced stresses and were effective as protective coating material for PET membranes. Glass-ceramic materials with separated crystallites of different morphologies sustained a mixed crack propagation pattern in brittle fracture mode.  相似文献   
80.
To probe the intrinsic stress distribution in terms of spatial Raman shift (ω) and change in the phonon linewidth (Γ), here we analyze self‐assembled graphene oxide fibers (GOF) ‘Latin letters’ by confocal Raman spectroscopy. The self‐assembly of GOF ‘Latin letters’ has been explained through surface tension, π–π stacking, van der Waals interaction at the air–water interface and by systematic time‐dependent investigation using field emission scanning electron microscopy analysis. Intrinsic residual stress due to structural joints and bending is playing a distinct role affecting the E2g mode (G band) at and away from the physical interface of GOF segments with broadening of phonon linewidth, indicating prominent phonon softening. Linescan across an interface of the GOF ‘letters’ reveals Raman shift to lower wavenumber in all cases but more so in ‘Z’ fiber exhibiting a broader region. Furthermore, intrinsic stress homogeneity is observed for ‘G’ fiber distributed throughout its curvature with negligible shift corresponding to E2g mode vibration. This article demonstrates the significance of morphology in stress distribution across the self‐assembled and ‘smart‐integrable’ GOF ‘Latin letters’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号