首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   55篇
  国内免费   45篇
化学   243篇
晶体学   3篇
力学   3篇
物理学   51篇
  2022年   2篇
  2021年   6篇
  2020年   14篇
  2019年   10篇
  2018年   9篇
  2017年   11篇
  2016年   14篇
  2015年   25篇
  2014年   19篇
  2013年   29篇
  2012年   26篇
  2011年   22篇
  2010年   11篇
  2009年   14篇
  2008年   10篇
  2007年   16篇
  2006年   11篇
  2005年   17篇
  2004年   13篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
101.
采用快速凝固与脱合金相结合的方法制备纳米多孔Ni-Mo合金,然后退火获得三维双连续纳米多孔NiMoO_4,采用XRD、SEM、TEM对多孔NiMoO_4的成分、形貌和结构进行表征,并通过循环伏安、恒电流充放电等方法测试多孔NiMoO_4电极的电化学性能。结果表明,Ni_5Mo_5Al_(90)和Ni_(2.5)Mo_(2.5)Al_(95)经脱合金和退火均可获得纳米多孔NiMoO_4,Mo元素对脱合金具有钉扎作用,可减小多孔合金的骨架和孔隙尺寸,由Ni_5Mo_5Al_(90)合金获得纳米多孔NiMoO_4表现出更为优异的超电容性能,其在1 A·g~(-1)电流密度比容量达708 F·g~(-1),当电流密度增加20 A·g~(-1),其比容保持率达57.1%。在4 A·g~(-1)电流密度下循环充放电1 000次,其比容保持率达91.2%。  相似文献   
102.
103.
The urgent need for nanoporous metal oxides with highly crystallized frameworks is motivating scientists to try to discover new preparation methods, because of their wide use in practical applications. Recent work has demonstrated that two‐dimensional (2D) cyanide‐bridged coordination polymers (CPs) are promising materials and appropriate for this purpose (Angew. Chem. Int. Ed.­ 2013 , 52, 1235). After calcination, 2D CPs can be transformed into nanoporous metal oxides with a highly accessible surface area. Here, this strategy is adopted in order to form 2D nanoporous nickel oxide (NiO) with tunable porosity and crystallinity, using trisodium citrate dihydrate as a controlling agent. The presence of trisodium citrate dihydrate plays a key role in the formation of 2D nanoflakes by controlling the nucleation rate and the crystal growth. The size of the nanoflakes gradually increases by augmenting the amount of trisodium citrate dihydrate in the reaction. After heating the as‐prepared CPs in air at different temperatures, nanoporous NiO can be obtained. During this thermal treatment, organic units (carbon and nitrogen) are completely removed and only the metal content remains to take part in the formation of nanoporous NiO. In the case of large‐sized 2D CP nanoflakes, the original 2D flake‐shapes are almost retained, even after thermal treatment at low temperature, but they are completely destroyed at high temperature because of further crystallization in the framework. Nanoporous NiO with high surface area shows significant efficiency and interesting results for supercapacitor application.  相似文献   
104.
We report two isoreticular 3D peptide‐based porous frameworks formed by coordination of the tripeptides Gly‐L ‐His‐Gly and Gly‐L ‐His‐L ‐Lys to CuII which display sponge‐like behaviour. These porous materials undergo structural collapse upon evacuation that can be reversed by exposure to water vapour, which permits recovery of the original open channel structure. This is further confirmed by sorption studies that reveal that both solids exhibit selective sorption of H2O while CO2 adsorption does not result in recovery of the original structures. We also show how the pendant aliphatic amine chains, present in the framework from the introduction of the lysine amino acid in the peptidic backbone, can be post‐synthetically modified to produce urea‐functionalised networks by following methodologies typically used for metal–organic frameworks built from more rigid “classical” linkers.  相似文献   
105.
Nanoporous carbon with a high specific surface area and unique porous structure represents an attractive material as an adsorbent in analytical chemistry. In this study, a magnetic nanoporous carbon (MNC) was fabricated by direct carbonization of Co-based metal-organic framework in nitrogen atmosphere without using any additional carbon precursors. The MNC was used as an effective magnetic adsorbent for the extraction and enrichment of some phenylurea herbicides (monuron, isoproturon, diuron and buturon) in grape and bitter gourd samples prior to their determination by high performance liquid chromatography with ultraviolet detection. Several important experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity was achieved in the concentration range of 1.0–100.0 ng g−1 for monuron, diuron and buturon and 1.5–100.0 ng g−1 for isoproturon with the correlation coefficients (r) larger than 0.9964. The limits of detection (S/N = 3) of the method were in the range from 0.17 to 0.46 ng g−1. The results indicated that the MNC material was stable and efficient adsorbent for the magnetic solid-phase extraction of phenylurea herbicides and would have a great application potential for the extraction and preconcentration of more organic pollutants from real samples.  相似文献   
106.
Diffusion in nanoporous host–guest systems is often considered to be too complicated to comply with such “simple” relationships as Fick’s first and second law of diffusion. However, it is shown herein that the microscopic techniques of diffusion measurement, notably the pulsed field gradient (PFG) technique of NMR spectroscopy and microimaging by interference microscopy (IFM) and IR microscopy (IRM), provide direct experimental evidence of the applicability of Fick’s laws to such systems. This remains true in many situations, even when the detailed mechanism is complex. The limitations of the diffusion model are also discussed with reference to the extensive literature on this subject.  相似文献   
107.
Diffusion, that is, the irregular movement of atoms and molecules, is a universal phenomenon of mass transfer occurring in all states of matter. It is of equal importance for fundamental research and technological applications. The present review deals with the challenges of the reliable observation of these phenomena in nanoporous materials. Starting with a survey of the different variants of diffusion measurement, it highlights the potentials of “microscopic” techniques, notably the pulsed field gradient (PFG) technique of NMR and the techniques of microimaging by interference microscopy (IFM) and IR microscopy (IRM). Considering ensembles of guest molecules, these techniques are able to directly record mass transfer phenomena over distances of typically micrometers. Their concerted application has given rise to the clarification of long‐standing discrepancies, notably between microscopic equilibrium and macroscopic non‐equilibrium measurements, and to a wealth of new information about molecular transport under confinement, hitherto often inaccessible and sometimes even unimaginable.  相似文献   
108.
In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di‐n‐propyl‐phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50–150.0 and 1.0–200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.  相似文献   
109.
具有超导绝缘相变特性的纳米多孔超导薄膜在红外光电探测领域有着潜在的应用价值,而其在红外波段的宽带光响应特性研究目前尚未见报道.为此,本文以纳米多孔氮化铌(NbN)薄膜为主要对象,研究了其在780—5000nm的近、中红外波长范围内的光响应特性.首先,采用Drude模型拟合的方法,不仅将对实验数据拟合的精度提高了约17%,而且得到了中红外波段的NbN光学参数;进而,采用时域有限差分法分析了加载纳米多孔NbN薄膜的背面对光器件的光响应特性,并给出了能够将纳米多孔薄膜简化为均匀薄膜的Bruggeman等效模型,从而可以将纳米多孔NbN薄膜光响应特性的仿真维度由三维降为一维;最后,基于等效模型和传输矩阵法,对加载纳米多孔NbN薄膜的背面对光器件在近、中红外波段内的光吸收特性进行了优化设计.结果表明:一方面,使用Bruggeman等效模型简化设计过程并不会影响最终结果的正确性;另一方面,仅仅是加载较为简单的光学腔,即可使得探测器的薄膜光吸收率在近、中红外宽带设计时均大于82%,在近红外双波长设计时均大于93.7%,并且多孔薄膜结构具有天然的极化不敏感特性.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号