首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   80篇
  国内免费   45篇
化学   22篇
力学   3篇
数学   11篇
物理学   402篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   8篇
  2019年   12篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   5篇
  2014年   17篇
  2013年   19篇
  2012年   10篇
  2011年   31篇
  2010年   34篇
  2009年   37篇
  2008年   73篇
  2007年   39篇
  2006年   35篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1994年   5篇
  1991年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
81.
We study the coupled translational, electronic, and field dynamics of the combined system “a two-level atom + a single-mode quantized field + a standing-wave ideal cavity”. In the semiclassical approximation with a point-like atom, interacting with the classical field, the dynamics is described by the Heisenberg equations for the atomic and field expectation values which are known to produce semiclassical chaos under appropriate conditions. We derive Hamilton–Schrödinger equations for probability amplitudes and averaged position and momentum of a point-like atom interacting with the quantized field in a standing-wave cavity. They constitute, in general, an infinite-dimensional set of equations with an infinite number of integrals of motion which may be reduced to a dynamical system with four degrees of freedom if the quantized field is supposed to be initially prepared in a Fock state. This system is found to produce semiquantum chaos with positive values of the maximal Lyapunov exponent. At exact resonance, the semiquantum dynamics is regular. At large values of detuning |δ|1, the Rabi atomic oscillations are usually shallow, and the dynamics is found to be almost regular. The Doppler–Rabi resonance, deep Rabi oscillations that may occur at any large value of |δ| to be equal to |αp0|, is found numerically and described analytically (with α to be the normalized recoil frequency and p0 the initial atomic momentum). Two gedanken experiments are proposed to detect manifestations of semiquantum chaos in real experiments. It is shown that in the chaotic regime values of the population inversion zout, measured with atoms after transversing a cavity, are so sensitive to small changes in the initial inversion zin that the probability of detecting any value of zout in the admissible interval [−1,1] becomes almost unity in a short time. Chaotic wandering of a two-level atom in a quantized Fock field is shown to be fractal. Fractal-like structures, typical with chaotic scattering, are numerically found in the dependence of the time of exit of atoms from the cavity on their initial momenta.  相似文献   
82.
Summary In high-Z atoms, quantum electrodynamic (QED) corrections are an important component in the theoretical prediction of atomic energy levels. The main QED effects in electronic atoms are the one-electron self-energy and vacuum-polarization corrections which are well known. At the next level of precision, estimates of the effect of electron interactions on the self energy and higher-order effects in two exchanged photon corrections are necessary. These corrections can be evaluated within the framework of QED in the bound interaction picture. For high-Z few-electron atoms, this approach provides a rapidly converging series in 1/Z for the corrections, which is the generalization of the well-known relativistic 1/Z expansion methods. This paper describes recent work on the effect of electron interactions on the self energy. The QED effects are particularly important for the theory for lithiumlike uranium where an accurate measurement of the Lamb shift has been made, as well as for numerous other cases where systematic differences appear between theory that does not include these QED effects and experiment.  相似文献   
83.
A very promising recent trend in applied quantum physics is to combine the advantageous features of different quantum systems into what is called “hybrid quantum technology”. One of the key elements in this new field will have to be a quantum memory enabling to store quanta over extended periods of time. Systems that may fulfill the demands of such applications are comb‐shaped spin ensembles coupled to a cavity. Due to the decoherence induced by the inhomogeneous ensemble broadening, the storage time of these quantum memories is, however, still rather limited. Here we demonstrate how to overcome this problem by burning well‐placed holes into the spectral spin density leading to spectacular performance in the multimode regime. Specifically, we show how an initial excitation of the ensemble leads to the emission of more than a hundred well‐separated photon pulses with a decay rate significantly below the fundamental limit of the recently proposed “cavity protection effect”.

  相似文献   

84.
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1→2 phase-covariant quantum cloning in two dimensions based on the cavity QED technique. The protocol is very simple and only two atoms are required. Our scheme is insensitive to the cavity field states and cavity decay. During the processes, the cavity is only virtually excited and it thus greatly prolongs the efficient decoherent time. Therefore, it may be realized in experiment.  相似文献   
85.
The presence of the σ-phase in Fe-Cr alloys (eg. Stainless steel) is important in industrial applications and from an academic point of view. The presence of the σ-phase in these alloys drastically affects their mechanical properties and their resistance to various corrosive media. In the present investigation Fe-Cr alloys containing different amounts of Mo were prepared and the transformation to the σ-phase was carried out by isothermally annealing the samples for various periods in an argon atmosphere. It will be shown that the presence of Mo has a dramatic accelerating effect on the rate of the σ-phase formation in these alloys. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
86.
For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection Pgs by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct Pgs=limt→∞Pt as the limit of a continuously differentiable family (Pt)t?0 of ground state projections of infrared regularized Hamiltonians Ht. Using the ODE solved by this family of projections, we show that the norm of their derivative is integrable in t which in turn yields the convergence of Pt by the fundamental theorem of calculus.  相似文献   
87.
何娟  叶柳  倪致祥 《中国物理 B》2008,17(5):1597-1600
An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.  相似文献   
88.
We propose an experimentally feasible idea for the delayed-choice quantum eraser, having adjustable path distinguishability/fringe visibility. The schematics are based on resonant, dispersive and Ramsey interactions of atoms under cavity QED scenario. The option for tuneability of the fringes in a delayed-choice setup stringently marks the conception of the time in the quantum theory, operational meanings of the state vector reduction and raises questions about ΨΨ-ontic models while helping to shed out the controversies surrounding the quantum eraser theme. The proposal can be efficiently executed experimentally within the prevailing cavity QED experimental research scenario with good overall success probability and fidelity.  相似文献   
89.
A scheme to implement the controlled‐NOT (CNOT) gate for quantum systems is proposed, which is based on Lyapunov control. The scheme does not require precise control of the interaction time since the system is stable when the control fields vanish. In particular, the control fields can be easily obtained by most initial states. As an example, the CNOT gate is realized for two atoms trapped in an optical cavity by exploiting two disturbance cases. Compared to continuous disturbance, the fidelity of the CNOT gate is higher under impulsive disturbance, however, interaction times are much longer. Numerical simulations indicate that the scheme is robust against variations of control parameters and decoherence caused by atomic spontaneous emission and cavity decay. Therefore, the scheme may provide useful applications in quantum computation.  相似文献   
90.
We propose a single-step implementation of a muti-target-qubit controlled phase gate with one catstate qubit (cqubit) simultaneously controlling n–1 target cqubits. The two logic states of a cqubit are represented by two orthogonal cat states of a single cavity mode. In this proposal, the gate is implemented with n microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the gate operation, decoherence caused due to the qutrit’s energy relaxation and dephasing is greatly suppressed. The gate implementation is quite simple because only a single-step operation is needed and neither classical pulse nor measurement is required. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one cqubit simultaneously controlling two target cqubits is feasible with present circuit QED technology. This proposal can be extended to a wide range of physical systems to realize the proposed gate, such as multiple microwave or optical cavities coupled to a natural or artificial three-level atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号