首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   80篇
  国内免费   45篇
化学   22篇
力学   3篇
数学   11篇
物理学   402篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   8篇
  2019年   12篇
  2018年   8篇
  2017年   5篇
  2016年   15篇
  2015年   5篇
  2014年   17篇
  2013年   19篇
  2012年   10篇
  2011年   31篇
  2010年   34篇
  2009年   37篇
  2008年   73篇
  2007年   39篇
  2006年   35篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1994年   5篇
  1991年   1篇
排序方式: 共有438条查询结果,搜索用时 0 毫秒
411.
We propose a new scheme for realizing deterministic quantum statetransfer (QST) between two spatially separated single moleculemagnets (SMMs) with the framework of cavity quantum electrodynamics(QED). In the present scheme, two SMMs are trapped in two spatiallyseparated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. Thepresent investigation provides research opportunities for realizingQST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.  相似文献   
412.
吴熙  陈志华  张勇  陈悦华  叶明勇  林秀敏 《中国物理 B》2011,20(6):60306-060306
Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.  相似文献   
413.
A scheme for approximately and conditionally teleporting an unknown atomic state in dissipative cavity QED is proposed. It is the extension of the scheme of [Phys. Rev. A 69 (2004) 064302], where the cavity mode decay has not been considered and only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In fact, the cavity mode decay exists really and must be delt with. In this paper, we investigate the influence from the cavity mode decay on the implementation of the approximate and conditional teleportation by means of the dissipative Jaynes Cummings model and then show the analytical expression of the fidelity of realization of the teleportation. Alternatively, our scheme does not involve an additional atom, only requiring two atoms and one single-mode cavity.  相似文献   
414.
We propose an experimentally feasible teleportation scheme with three-atom W-class state, which was first proposed by Agrawal and Pati [P. Agrawal and A. Pati, Phys. Rev. A 74 (2006) 062320], in cavity QED. In this scheme atoms interact simultaneously with a nonresonant cavity and there is no energy exchange between the atoms and the cavity. Thus it is insensitive to the cavity decay, which is of importance in view of experiment.  相似文献   
415.
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.  相似文献   
416.
Surface plasmons are of particular interest recently as their performance is approaching the enhancement of light emission efficiencies, after synthesized close to the vicinity of solid state materials, i.e., semiconductor structure. As other scientific works have been proposed to improve the light-emitting efficiency, such as the use of resonant cavities, photon recycling, and thin-light emitting layers with periodic surface texturing, surface plasmon possesses a promising way to the light enhancement, due to the energy coupling effect between the emitted photons from the semiconductor and the metallic nanoparticles fabricated by nanotechnology. The usual pathway of plasmon enhanced light emitting devices is the use of Ag/Au nanoparticles coating the surface of semiconductor quantum dot (QD) or quantum well (QW) structures. However, apart from efforts to extract as much light as possible from single-driven surface plasmon-QD/QW, it is possible to enhance the light emission rate with double optical-excitations. This approach is based on the quantum interference between the external lasers and the localized quantum light, and promised to stimulate the development of plasmon-enhanced optical sensors. In this review, we describe the quantum properties of light propagation in hybrid nanoparticle and semiconductor materials, i.e., quantum dot or nanomechanical resonator coupled to Ag/Au nanoparticles, driven by two optical fields. Distinct with single excitation, plasmon-assisted complex driven by two optical fields, exhibit specific quantum interference characteristics that can be used as sensitive all-optical devices, such as the slow light switch, nonlinear optical Kerr modulator, and ultra-sensitive mass sensing. We summarize the recent advances of light propagation in surface plasmon-enhanced quantum dot devices, driven by two optical fields, which would stimulate the development of novel optical materials, deeper theoretical insights, innovative new devices, and plasmonic applications with potential for significant technological and societal impact.  相似文献   
417.
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
418.
The evolution of a system state is derived based on the nonresonant interaction of a three-level "Λ" type atom with two cavity modes at a pair coherent state and two classic fields,and a cavity field state is analyzed in detail under conditional detecting.It is found that the quantized modified Bessel-Gaussian states as well as the superposition states consisting of the quantized vortex states with different weighted coefficients may be prepared through carefully preparing an initial atomic state and appropriately adjusting the interaction time.The scheme provides an additional choice to realize the two-mode quantized vortex state within the context of cavity quantum electrodynamics(QED).  相似文献   
419.
An alternative scheme is proposed for preparing the superpositions of coherent states with controllable weighting factors along a straight line for a cavity field. The scheme is based on the interaction of a single-mode cavity field with a resonant two-level atom driven by a strong classical field. It is in contrast to the previous methods used in cavity QED of injecting a coherent state into a cavity via a microwave source. In the scheme, the interaction between the cavity mode and atoms is fully resonant, thus the required interaction time is greatly shortened. Moreover, the present scheme requires smaller numbers of operations. In view of decoherence, a reduction of interaction time and numbers of operations for the state preparation is very important for experimental implementation of quantum state engineering.  相似文献   
420.
J. Seke   《Physica A》1996,230(3-4)
It is demonstrated, for the first time to our knowledge, that the Lamb-shift calculation for all states of hydrogenic atoms can be carried out to order α5 by applying the methods of nonrelativistic quantum electrodynamics and without using the Dirac equation and the second quantization for the electron. The extremely small deviations from the standard relativistic results were calculated for different S- and non-S-states as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号