首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4723篇
  免费   1231篇
  国内免费   624篇
化学   3605篇
晶体学   40篇
力学   199篇
综合类   36篇
数学   524篇
物理学   2174篇
  2024年   12篇
  2023年   65篇
  2022年   150篇
  2021年   204篇
  2020年   271篇
  2019年   202篇
  2018年   158篇
  2017年   197篇
  2016年   272篇
  2015年   248篇
  2014年   366篇
  2013年   405篇
  2012年   352篇
  2011年   358篇
  2010年   306篇
  2009年   309篇
  2008年   318篇
  2007年   280篇
  2006年   279篇
  2005年   227篇
  2004年   240篇
  2003年   187篇
  2002年   147篇
  2001年   124篇
  2000年   114篇
  1999年   98篇
  1998年   105篇
  1997年   88篇
  1996年   82篇
  1995年   60篇
  1994年   61篇
  1993年   42篇
  1992年   48篇
  1991年   32篇
  1990年   26篇
  1989年   17篇
  1988年   19篇
  1987年   13篇
  1986年   20篇
  1985年   7篇
  1984年   8篇
  1982年   12篇
  1981年   7篇
  1980年   11篇
  1979年   9篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
排序方式: 共有6578条查询结果,搜索用时 375 毫秒
321.
322.
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons’ spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high‐spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high‐spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.  相似文献   
323.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   
324.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   
325.
Back electron transfer (BET) is one of the important processes that govern the decay of generated ion pairs in intermolecular photoinduced electron transfer reactions. Unfortunately, a detailed mechanism of BET reactions remains largely unknown in spite of their importance for the development of molecular photovoltaic structures. Here, we examine the BET reaction of pyrene (Py) and 1,4‐dicyanobenzene (DCB) in acetonitrile (ACN) by using time‐resolved near‐ and mid‐IR spectroscopy. The Py dimer radical cation (Py2.+) and DCB radical anion (DCB.?) generated after photoexcitation of Py show asynchronous decay kinetics. To account for this observation, we propose a reaction mechanism that involves electron transfer from DCB.? to the solvent and charge recombination between the resulting ACN dimer anion and Py2.+. The unique role of ACN as a charge mediator revealed herein could have implications for strategies that retard charge recombination in dye‐sensitized solar cells.  相似文献   
326.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long-lived triplet charge-transfer (3CT) state, based on the electron spin control using spin-orbit charge transfer intersystem crossing (SOCT-ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT-ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long-lived 3CT state (0.94 μs in deaerated n-hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time-resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron-spin polarization pattern was observed for the naphthalimide-localized triplet state. Our spiro compact dyad structure and the electron spin-control approach is different to previous methods for which invoking transition-metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   
327.
The controlled synthesis of multicomponent metal–organic frameworks (MOFs) allows for the precise placement of multiple cooperative functional groups within a framework, leading to emergent synergistic effects. Herein, we demonstrate that turn-on fluorescence sensors can be assembled by combining a fluorophore and a recognition moiety within a complex cavity of a multicomponent MOF. An anthracene-based fluorescent linker and a hemicyanine-containing CN-responsive linker were sequentially installed into the lattice of PCN-700. The selective binding of CN to hemicyanine inhibited the energy transfer between the two moieties, resulting in a fluorescence turn-on effect. Taking advantage of the high tunability of the MOF platform, the ratio between anthracene and the hemicyanine moiety could be fine-tuned in order to maximize the sensitivity of the overall framework. The optimized MOF-sensor had a CN-detection limit of 0.05 μm , which is much lower than traditional CN fluorescent sensors (about 0.2 μm ).  相似文献   
328.
Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.  相似文献   
329.
Single-atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single-atom-doped titania enables tunable hydrogen evolution reaction (HER) activity. First-principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping-induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single-atom-doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets.  相似文献   
330.
Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing Se Se bond, the Se Se bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号