首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2328篇
  免费   435篇
  国内免费   528篇
化学   1791篇
晶体学   21篇
力学   107篇
综合类   35篇
数学   158篇
物理学   1179篇
  2024年   14篇
  2023年   38篇
  2022年   150篇
  2021年   149篇
  2020年   181篇
  2019年   121篇
  2018年   114篇
  2017年   96篇
  2016年   151篇
  2015年   120篇
  2014年   150篇
  2013年   167篇
  2012年   161篇
  2011年   159篇
  2010年   123篇
  2009年   171篇
  2008年   136篇
  2007年   135篇
  2006年   159篇
  2005年   121篇
  2004年   112篇
  2003年   81篇
  2002年   79篇
  2001年   71篇
  2000年   55篇
  1999年   39篇
  1998年   43篇
  1997年   34篇
  1996年   27篇
  1995年   29篇
  1994年   15篇
  1993年   15篇
  1992年   9篇
  1991年   8篇
  1990年   10篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1982年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1971年   2篇
  1970年   1篇
  1959年   1篇
排序方式: 共有3291条查询结果,搜索用时 15 毫秒
61.
Metal-sulfur batteries are a promising next-generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal-sulfur batteries, a phenomenon that leads to low energy efficiency and short life-spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium- and lithium-sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide-polymer interactions, an understudied property-performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life-span for Li−S and Mg−S batteries.  相似文献   
62.
Thiacalixarene-supported Co32nanoclusters encapsulated in polyacrylonitrile nanofibers(Co32@PAN-NFs) by electrospinning have been utilized as precursors to fabricate N-doped CoO@Co9S8 carbon nanofibers(CoO@Co9S8@CNFs) for superior Li-ion storage. The S-rich Co32 clusters capped by organic sheets afforded the well dispersed cobalt oxide/sulfide nanoparticles embedded in carbon nanofiber composites by direct calcination. The N-doped CoO@Co9S8@CNFs nanocomposites have been utilized as anode materials for lithium ion battery with the reversible capabilities being of 1051.8, 967.6, 894.7, 782.7, 669.5 and 525.4 mA·h/g at 0.1, 0.2, 0.5, 1, 2 and 3 A/g, respectively. The CoO@Co9S8@CNFs also showed a relatively high stable capacity of 551.7 mA·h/g at the current density of 1 A/g after 200 cycles of rate experiments. The as-obtained N-doped CoO@Co9S8@CNFs nanocomposites exhibited superior reversible capacity, rate performance, Coulomb efficiency(74.5% vs. 63.9%) and cyclic stability comparing with the CoO@Co9S8@C derived from simple annealing of Co32 templates.  相似文献   
63.
Salt cavern gas storage is one of the vital strategic natural gas reserves and emergency peak shaving facilities all over the world. However, rock salt in China is primarily bedded salt, usually composed of many thin salt layers and interlayers (e.g., anhydrite, mudstone, and glauberite). During the water solution mining process of the cavern, the insoluble mudstones fall to the bottom and account for 1/3 up to 2/3 of the storage capacity. The bulk volume of the insoluble mudstones is almost twice its in-suit volume. It is of great urgency to investigate the swelling mechanisms of the bottom insoluble mudstones. Given this, we first analyzed the mineral composition of salt rock and insoluble mudstones by using XRD and SEM methods. Then, experimental studies were carried out considering both clay swelling and physical packing. At last, the zeta potential tests were conducted to reveal the swelling mechanisms of the bottom mudstones. Results show that the volumetric expansion of mudstones is made up of three parts: clay swelling, particle surface bound water volume, and pore space free water volume increase. Because the content of expansive clay in the bottom mudstones is less than 2%, and the high salinity brine in the cavern has excellent clay stability performance, clay swelling is not the main contributor to the volumetric expansion of the bottom mudstones. Measurement results show that the surface of the mudstones is negatively charged after hydration. Electrostatic repulsion can increase the spacing between small rock particles and creates approximately 47.6% of the pore space, which is the main factor in the volumetric expansion of mudstones. This study provides a theoretical basis for the mining solution and capacity enlargement during the construction of bedded salt cavern gas storage in China.  相似文献   
64.
The context of molecular structronics (from “molecular structure” and “electronics”) is that of molecular-level electrochemical storage of energy of sustainable origin (wind, solar). Due to its discontinuous availability, storage of this energy is a key issue. The targeted type of storage relies on implementing “electron reservoirs” within the structronic molecules by electrochemically forming dedicated chemical bonds according to non-catalytic processes. Reservoir bonds are therefore integral parts of the molecular backbone of structronic assemblies. When filled, electron reservoirs manifest themselves in the form of elongated covalent bonds that are to be cleaved for electron releasing (discharging) on demand. The scope of this short review is limited to pyridinium electrophores as particularly suited building blocks for the development of structronics.  相似文献   
65.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   
66.
The redox-mediated electrochemical–chemical process, when it involves the redox-targeting reaction with energy materials, has shown intriguing potential for various energy-related applications. This review starts with a brief discussion on the evolution of redox-targeting reactions for high-energy redox-flow batteries and the critical future studies for large-scale energy storage. Then, with spatially decoupled water electrolysis as an example, the merits of redox-targeting reaction by liberating the catalyst from electrode surface are highlighted, followed by an introduction of redox targeting–based thermal-to-electrical conversion. We have also featured various redox-targeting processes in other fields of study, such as electrochromic window, redox catalysis, and spent battery material recycling. Overall, this review attempts to demonstrate the incredible versatility and prospects of redox-targeting process for energy-related applications.  相似文献   
67.
Nowadays, the purpose of human genomics is widely emerging in health-related problems and also to achieve time and cost-efficient healthcare. Due to advancement in genomics and its research, development in privacy concerns is needed regarding querying, accessing and, storage and computation of the genomic data. While the genomic data is widely accessible, the privacy issues may emerge due to the untrusted third party (adversaries/researchers), they may reveal the information or strategy plans regarding the genome data of an individual when it is requested for research purposes. To mitigate this problem many privacy-preserving techniques are used along with cryptographic methods are briefly discussed. Furthermore, efficiency and accuracy in a secure and private genomic data computation are needed to be researched in future.  相似文献   
68.
3d过渡金属修饰是改善石墨烯储氢性能的最有效途径, 但仍存在金属团聚和H2解离导致难以脱附的问题. 提出了B/N掺杂单缺陷石墨烯(BMG/NMG)的策略来避免以上两个问题. 密度泛函理论计算结果表明, N掺杂可以使Sc, Ti, V与石墨烯的结合能提高3~4倍, B掺杂可以将Sc与石墨烯的结合能提高3倍. Sc/BMG和Sc/NMG吸附的第一个H2不会解离. Sc/BMG中Sc吸附5个H2, 平均氢分子结合能为-0.18~-0.43 eV, 并且可以通过在同侧锚定多个Sc原子形成Sc/C3B2五元环增加H2吸附位点. Sc/NMG中每个Sc吸附6个H2, 平均氢分子结合能为-0.17~-0.29 eV, 还可以通过在异侧修饰形成Sc/N3/Sc单元进一步提高储氢能力. 研究结果将为设计基于3d过渡金属修饰碳材料的储氢材料提供理论基础.  相似文献   
69.
Despite intensive scientific efforts on the development of organic batteries, their full potential is still not being realized. The individual components, such as electrode materials and electrolytes, are in most cases developed independently and are not adjusted to each other. In this context, we report on the performance optimization of a full-organic solid-state battery system by the mutual adaptation of the electrode materials and an ionic liquid (IL)-based gel polymer electrolyte (GPE). The formulation of the latter was designed for a one-step manufacturing approach and can be applied directly to the electrode surface, where it is UV-cured to yield the GPE without further post-treatment steps. Herein, a special focus was placed on the applicability in industrial processes. A first significant capacity increase was achieved by the incorporation of the IL into the electrode composite. Furthermore, the GPE composition was adapted applying acrylate- and methacrylate-based monomers and combinations thereof with the premise of a fast curing step. Furthermore, the amount of IL was varied, and all combinations were evaluated for their final performance in cells. The latter variation revealed that a high ionic conductivity is not the only determining factor for a good cell performance. Next to a sufficient conductivity, the interaction between electrode and electrolyte plays a key role for the cell performance as it enhances the accessibility of the counter ions to the redox-active sites.  相似文献   
70.
叔丁醇钾(C_4H_9OK)的添加显著改善了Mg(NH_2)_2-2LiH体系的储氢性能。添加0.08 mol C_4H_9OK的Mg(NH_2)_2-2LiH-0.08C_4H_9OK样品表现出最佳储氢性能。该样品的起始放氢温度仅为70℃,较Mg(NH_2)_2-2LiH原始样品降低了60℃;130℃完全放氢后,该样品可在50℃开始吸氢,较原始样品降低了50℃。Mg(NH_2)_2-2LiH-0.08C_4H_9OK样品可在150℃的等温条件下50min内迅速放出质量分数3.82%的氢气,完全放氢后可在120℃的等温条件下50 min内快速吸收质量分数4.11%的氢气,表现出良好的吸放氢动力学性能。C_4H_9OK的添加降低了样品放氢反应的表观活化能和反应焓变,改善了放氢反应的动力学和热力学性能,从而降低了放氢反应温度。进一步的放氢反应机理研究发现,在180℃之前,C_4H_9OK对Mg(NH_2)_2-2LiH体系的放氢起催化改性作用;温度继续升高后,C_4H_9OK将会分解并参与放氢反应最终生成Li_3K(NH_2)_4。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号