首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7595篇
  免费   850篇
  国内免费   329篇
化学   582篇
晶体学   34篇
力学   1039篇
综合类   129篇
数学   4698篇
物理学   2292篇
  2025年   22篇
  2024年   77篇
  2023年   94篇
  2022年   87篇
  2021年   107篇
  2020年   162篇
  2019年   169篇
  2018年   159篇
  2017年   179篇
  2016年   224篇
  2015年   185篇
  2014年   290篇
  2013年   603篇
  2012年   404篇
  2011年   456篇
  2010年   355篇
  2009年   459篇
  2008年   492篇
  2007年   468篇
  2006年   481篇
  2005年   370篇
  2004年   343篇
  2003年   331篇
  2002年   296篇
  2001年   254篇
  2000年   232篇
  1999年   235篇
  1998年   192篇
  1997年   145篇
  1996年   141篇
  1995年   78篇
  1994年   80篇
  1993年   70篇
  1992年   56篇
  1991年   48篇
  1990年   45篇
  1989年   31篇
  1988年   44篇
  1987年   26篇
  1986年   26篇
  1985年   39篇
  1984年   37篇
  1983年   24篇
  1982年   30篇
  1981年   20篇
  1980年   20篇
  1979年   24篇
  1978年   12篇
  1977年   17篇
  1976年   10篇
排序方式: 共有8774条查询结果,搜索用时 0 毫秒
991.
    
A common challenge in regression is that for many problems, the degrees of freedom required for a high-quality solution also allows for overfitting. Regularization is a class of strategies that seek to restrict the range of possible solutions so as to discourage overfitting while still enabling good solutions, and different regularization strategies impose different types of restrictions. In this paper, we present a multilevel regularization strategy that constructs and trains a hierarchy of neural networks, each of which has layers that are wider versions of the previous network's layers. We draw intuition and techniques from the field of Algebraic Multigrid (AMG), traditionally used for solving linear and nonlinear systems of equations, and specifically adapt the Full Approximation Scheme (FAS) for nonlinear systems of equations to the problem of deep learning. Training through V-cycles then encourage the neural networks to build a hierarchical understanding of the problem. We refer to this approach as multilevel-in-width to distinguish from prior multilevel works which hierarchically alter the depth of neural networks. The resulting approach is a highly flexible framework that can be applied to a variety of layer types, which we demonstrate with both fully connected and convolutional layers. We experimentally show with PDE regression problems that our multilevel training approach is an effective regularizer, improving the generalize performance of the neural networks studied.  相似文献   
992.
    
Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high-dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f $$ f $$ -divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high-dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low-rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point-wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low-rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low-rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.  相似文献   
993.
    
We present a unified framework to efficiently approximate solutions to fractional diffusion problems of stationary and parabolic type. After discretization, we can take the point of view that the solution is obtained by a matrix-vector product of the form f τ ( L ) b $$ {f}^{boldsymbol{tau}}(L)mathbf{b} $$ , where L $$ L $$ is the discretization matrix of the spatial operator, b $$ mathbf{b} $$ a prescribed vector, and f τ $$ {f}^{boldsymbol{tau}} $$ a parametric function, such as a fractional power or the Mittag-Leffler function. In the abstract framework of Stieltjes and complete Bernstein functions, to which the functions we are interested in belong to, we apply a rational Krylov method and prove uniform convergence when using poles based on Zolotarëv's minimal deviation problem. The latter are particularly suited for fractional diffusion as they allow for an efficient query of the map τ f τ ( L ) b $$ boldsymbol{tau} mapsto {f}^{boldsymbol{tau}}(L)mathbf{b} $$ and do not degenerate as the fractional parameters approach zero. We also present a variety of both novel and existing pole selection strategies for which we develop a computable error certificate. Our numerical experiments comprise a detailed parameter study of space-time fractional diffusion problems and compare the performance of the poles with the ones predicted by our certificate.  相似文献   
994.
I consider two cases where QCD string is described by an effective theory of long strings: the static potential and meson scattering amplitudes in the Regge regime. I show how they can be solved in the mean-field approximation, justified by the large number of space–time dimensions, and argue that it turns out to be exact. I compare contributions from QCD string and perturbative QCD and discuss experimental consequences for the scattering amplitudes.  相似文献   
995.
红外运动小目标的检测   总被引:2,自引:19,他引:2  
通过分析天空背景下红外运动小目标、噪音以及背景的特征,提出一种检测方法·首先利用向量小波变换对运动图像进行预处理;其次采用图像差分进行目标的粗检测,提取出候选目标;最后可根据运动目标和噪音的特征对候选目标进行识别,检测出真实的运动小目标·实验证明,该方法可有效检测天空背景下红外运动小目标·  相似文献   
996.
X射线荧光分析中X射线管原级能谱分布的测定   总被引:2,自引:0,他引:2  
确切知道X射线管激发的原级能谱分布是X射线荧光分析中的一个重要前提,所用能谱分布函数的准确度大大影响了最终的测量结果。提出利用间接测量法,选用合适的参量模型来描述X射线的原级能谱分布。依靠实验测得的厚靶纯元素样品的荧光强度,利用已知的理论公式,建立非线性方程,优化得到参量模型中的参量值。通过比较实验测得的元素的荧光强度值和利用得到的能谱分布函数计算的理论值,证明此种方法是可行的。  相似文献   
997.
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.  相似文献   
998.
利用离散偶极子近似(DDA)方法研究了椭球形的纳米石墨粒子的红外消光特性。计算了不同形状的椭球粒子红外消光截面随波长变化规律,并与等效球形粒子的消光性能进行了比较,分析了不同入射波长时,椭球粒子形状和粒径对消光的影响。结果表明,椭球状的纳米石墨粒子红外消光性能好于等效球粒子的消光性能,椭球粒子的最佳消光等效粒径与轴长比和入射波长有关。  相似文献   
999.
本文将移动粒子半隐式法(MPS)的基本算法由二维扩展至三维。将圆柱坐标系引入到初场粒子的布置中,避免了在笛卡儿坐标系下处理不规则形状(如斜边或曲边)问题时粒子初场布置困难和精确度较低的问题,改善了对计算边界条件表达的精确性。引入移动边界模型,对直叶片搅拌器的内部流动进行了三维数值模拟。还提出了一种新的初始粒子布置简易方法,明显简化粒子初始布置时的复杂程度,提高了对三维复杂几何形状问题的可操作性。  相似文献   
1000.
从双目遥感凝视系统的视场重叠区进入系统的信息量大于通过非重叠区的信息量,根据这一特征建立了一种新的运动小目标双目并行快速实时自动检测算法。首先采用差分向量无穷范数算法对原始图像序列做预处理,去掉大量低频噪音和背景,然后采用光流场法对运动小目标进行分割,最后用所提出的空间时间并行快速判定算法对分割的可疑运动小目标进行判定。实验结果表明:由于识别判定算法的空间时间是并行处理的,所以识别判定的平均速度比单目视觉系统提高了50%;在图像信噪比不小于5dB的情况下,准确判定识别的概率为97%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号