首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3915篇
  免费   771篇
  国内免费   536篇
化学   2277篇
晶体学   10篇
力学   546篇
综合类   29篇
数学   463篇
物理学   1897篇
  2024年   10篇
  2023年   61篇
  2022年   96篇
  2021年   96篇
  2020年   118篇
  2019年   98篇
  2018年   105篇
  2017年   135篇
  2016年   165篇
  2015年   138篇
  2014年   182篇
  2013年   326篇
  2012年   271篇
  2011年   282篇
  2010年   249篇
  2009年   285篇
  2008年   298篇
  2007年   298篇
  2006年   297篇
  2005年   273篇
  2004年   217篇
  2003年   217篇
  2002年   175篇
  2001年   143篇
  2000年   131篇
  1999年   111篇
  1998年   81篇
  1997年   69篇
  1996年   54篇
  1995年   27篇
  1994年   30篇
  1993年   21篇
  1992年   27篇
  1991年   24篇
  1990年   15篇
  1989年   23篇
  1988年   15篇
  1987年   6篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1974年   3篇
  1972年   2篇
排序方式: 共有5222条查询结果,搜索用时 15 毫秒
161.
The traditional method for opening the electron shells of noble gas atoms involves a strong electronegative atom or group. However, this approach is limited to only heavy noble‐gas atoms, such as Kr and Xe. In this paper, we performed accurate calculations of He@C8H8 and He@C10H16 and showed the possibility of opening the electron shell of a light noble‐gas atom. © 2012 Wiley Periodicals, Inc.  相似文献   
162.
The direct functionalization of C? H bonds is an attractive strategy in organic synthesis. Although several advances have been made in this area, the selective activation of inert sp3 C? H bonds remains a daunting challenge. Recently, a new type of sp3 C? H activation mode through internal hydride transfer has demonstrated the potential to activate remote sp3 C? H linkages in an atom‐economic manner. This Minireview attempts to classify recent advances in this area including the transition to non‐activated sp3 C? H bonds and asymmetric hydride transfers.  相似文献   
163.
The reactivity of the two diatomic congeneric systems [CO].+ and [SiO].+ towards methane has been investigated by means of mass spectrometry and quantum‐chemical calculations. While [CO].+ gives rise to three different reaction channels, [SiO].+ reacts only by hydrogen‐atom transfer (HAT) from methane under thermal conditions. A theoretical analysis of the respective HAT processes reveals two distinctly different mechanistic pathways for [CO].+ and [SiO].+, and a comparison to the higher metal oxides of Group 14 emphasizes the particular role of carbon as a second‐row p element.  相似文献   
164.
A simple, green, and efficient protocol is reported for the preparation of aryl-7,8-dihydro[1,2,4]triazolo[4,3-a]-pyrimidine-6-carbonitriles through one-pot multi component reaction using substituted aromatic aldehydes, malononitrile, and 3-amino[1,2,4]triazole. The reaction is catalyzed by boric acid in aqueous micellar condition. Present protocol incorporates environmentally non-hazardous reaction condition, easy work-up, and use of recyclable catalytic system with associated benefits like excellent yield (84–96%) and shorter reaction time (20 min). Proposed methodology offers rapid access to substituted aryl-7,8-dihydro[1,2,4]triazolo[4,3-a]pyrimidine-6-carbonitriles with high atom-economy and catalytic efficiency.  相似文献   
165.
A novel, efficient sampling method for biomolecules is proposed. The partial multicanonical molecular dynamics (McMD) was recently developed as a method that improved generalized ensemble (GE) methods to focus sampling only on a part of a system (GEPS); however, it was not tested well. We found that partial McMD did not work well for polylysine decapeptide and gave significantly worse sampling efficiency than a conventional GE. Herein, we elucidate the fundamental reason for this and propose a novel GEPS, adaptive lambda square dynamics (ALSD), which can resolve the problem faced when using partial McMD. We demonstrate that ALSD greatly increases the sampling efficiency over a conventional GE. We believe that ALSD is an effective method and is applicable to the conformational sampling of larger and more complicated biomolecule systems. © 2013 Wiley Periodicals, Inc.  相似文献   
166.
Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post‐purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid‐liquid biphasic catalyzed systems, especially thermo‐regulated catalysis systems.

  相似文献   

167.
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone – the latter is formed from the former after electron transfer from a sacrificial electron donor – are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.  相似文献   
168.
The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was –0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.  相似文献   
169.
An atom-economic ring construction approach to the synthesis of α-(hetero)arylfurans based on renewable furanic platform chemicals has been developed. Corresponding compounds have been prepared in good to excellent yields via [2+2+2] and [4+2] cycloaddition reactions using metal-catalyzed or photoredox protocols. Easily available HMF-based 2-hydroxymethyl-5-ethynylfuran and 2-hydroxymethyl-5-cyanofuran were used as starting materials. A synthetic route with an improved carbon economy factor has been implemented to achieve sustainability aim. The possible application of arylfurans as molecular conductors has been investigated by DFT calculations, which revealed excellent charge transfer properties. As a future perspective, integration of biomass processing strategy into manufacturing of molecular electronics was pointed out to achieve the aim of sustainability.  相似文献   
170.
Controlling the morphology and composition of one-dimensional (1D) and two-dimensional (2D) assemblies of matter is essential to design and create nanostructures with exceptional material properties, for applications ranging from nanoelectronics to nanomedicine. Within this latter, a great interest is placed on assembling magnetoplasmonic nanostructures to enable multimodal biosensing and bioimaging for early diagnosis and prognosis of diseases. To date, the synthesis of such complex nanostructures is mostly relying on wet chemistry and templates. Herein, we employed a templateless physical method to generate FeAg-based anisotropic nanostructures, using a modified cluster source. Under tuned experimental conditions, we demonstrated the successful magnetic-assisted assembly of Fe nanoclusters (Fe NCs), to form stable and permanent branched Fe nanorods (Fe NRs), core@shell Fe@Ag-NRs, Fe nanosheets (Fe NSs), and Fe/Ag-NSs. This assembly is driven by the need to reduce their magnetic interaction energy on one hand and their overall surface energy on the other hand. When NCs and NRs are magnetically brought into intimate contact, they undergo a coalescence process, through the interfacial diffusion of the surface atoms, resulting in the formation of 1D and 2D nanostructures. For Fe@Ag NRs, the advantage conferred by the Ag shell is to protect Fe NRs from oxidation and prevent them from aggregation at the same time. The observed contrast reversal in Scanning Electron Microscopy (SEM) images of Fe NRs and Fe NSs is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号