首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18009篇
  免费   1699篇
  国内免费   941篇
化学   4420篇
晶体学   102篇
力学   7055篇
综合类   181篇
数学   4346篇
物理学   4545篇
  2024年   17篇
  2023年   166篇
  2022年   276篇
  2021年   361篇
  2020年   467篇
  2019年   378篇
  2018年   411篇
  2017年   495篇
  2016年   518篇
  2015年   551篇
  2014年   757篇
  2013年   1327篇
  2012年   922篇
  2011年   1124篇
  2010年   788篇
  2009年   1045篇
  2008年   988篇
  2007年   1032篇
  2006年   903篇
  2005年   803篇
  2004年   841篇
  2003年   725篇
  2002年   658篇
  2001年   490篇
  2000年   504篇
  1999年   462篇
  1998年   448篇
  1997年   434篇
  1996年   366篇
  1995年   325篇
  1994年   303篇
  1993年   257篇
  1992年   254篇
  1991年   196篇
  1990年   174篇
  1989年   130篇
  1988年   127篇
  1987年   90篇
  1986年   93篇
  1985年   94篇
  1984年   85篇
  1983年   41篇
  1982年   87篇
  1981年   28篇
  1980年   19篇
  1979年   19篇
  1978年   17篇
  1977年   9篇
  1976年   10篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
911.
《Current Applied Physics》2014,14(3):378-382
Nanolayered superlattices composed of ferromagnetic SrRuO3 and antiferromagnetic SrMnO3 layers were grown on SrTiO3 (100) substrates by pulsed laser deposition. Multilayers were grown under predetermined synthesis conditions resulting in growth of SrRuO3 and SrMnO3 by step flow and layer-by-layer modes, respectively. The growth of SrMnO3 was observed to occur through the layer-by-layer during the entire deposition process despite the expected increase in surface roughness because of the incorporation of SrRuO3 upper layers. Monitoring by reflection high-energy electron diffraction (RHEED) revealed that the growth of every SrMnO3 layer consisted of a pre-stage during which the gaps on the relatively rough SrRuO3 surface were filled before the actual growth of the SrMnO3 layer, which resulted in incomplete half oscillation and change from spot patterns to streaky patterns. The in-plane lattice constant did not show any considerable change in the case of SrRuO3 and SrMnO3 layers, despite the considerable lattice mismatch between the two materials (SrRuO3, SrMnO3) and SrTiO3. On the other hand, the RHEED patterns showed the existence of lattice mismatch effects in the out-of-plane lattice constant, which showed significant strains of opposite signs in the different layers, indicating a strong dependence on the composition of the layers and superlattice periodicity. In this paper, the growth characteristics of a SrRuO3/SrMnO3 multilayer along with its magnetic properties will be discussed.  相似文献   
912.
The free (or open) boundary condition (FBC, OBC) was proposed by Papanastasiou et al. (A new outflow boundary condition, International Journal for Numerical Methods in Fluids, 1992; 14:587–608) to handle truncated domains with synthetic boundaries where the outflow conditions are unknown. In the present work, implementation of the FBC has been tested in several benchmark problems of viscous flow in fluid mechanics. The FEM is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal or non‐isothermal, steady‐state conditions, for Newtonian fluids. The effects of inertia, gravity, compressibility, pressure dependence of the viscosity, slip at the wall, and surface tension are all considered individually in the extrudate‐swell benchmark problem for a wide range of the relevant parameters. The present results extend previous ones regarding the applicability of the FBC and show cases where the FBC is inappropriate, namely in the extrudate‐swell problem with gravity or surface‐tension effects. Particular emphasis has been given to the pressure at the outflow, which is the most sensitive quantity of the computations. In all cases where FBC is appropriate, excellent agreement has been found in comparisons with results from very long domains. The formulation for Picard‐type iterations is given in some detail, and the differences with the Newton–Raphson formulation are highlighted regarding some computational aspects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
913.
This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge–Kutta–Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.  相似文献   
914.
This study presents the vortex structure and numerical instability increase occurring when the level of elasticity is enhanced in inertial flows in planar contraction configuration for finitely extensible nonlinear elastic model by Peterlin (FENE‐P) fluid 1 . The re‐entrant corner effect on corner vortices is also considered. The calculations are performed using extended matrix logarithm formulation described in a previous paper: A. Jafari et al. A new extended matrix logarithm formulation for the simulation of viscoelastic fluids by spectral elements. Computer & Fluids 2010; 39 (9):1425–1438. In that reference, the proposed algorithm has been tested for simple geometry such as Poiseuille flow. In this study, we are interested in the capability of this algorithm for more complex geometry. This formulation helps to reach higher values of the Weissenberg number when compared with the classical one. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
915.
An analysis is presented to investigate the effects of chemical reaction, thermal radiation and heat generation or absorption on unsteady free convective heat and mass transfer along an infinite vertical porous plate in the presence of a transverse magnetic field and Hall current. The governing partial differential equations are formulated and transformed by using a similarity transformation into a system of ordinary differential equations. The resulting equations are solved numerically using a fourth‐order Runge–Kutta scheme along with the shooting method. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Numerical results for the velocity, temperature and concentration distributions are shown graphically for different parametric values. The effects of parameters on the local friction coefficients, the Nusselt number and Sherwood numbers are depicted in tabulated form. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
916.
A mesh‐free particle method, based on the moving particle semi‐implicit (MPS) interaction model, has been developed for the simulation of two‐dimensional open‐boundary free‐surface flows. The incompressibility model in the original MPS has been replaced with a weakly incompressible model. The effect of this replacement on the efficiency and accuracy of the model has been investigated. The new inflow–outflow boundary conditions along with the particle recycling strategy proposed in this study extend the application of the model to open‐boundary problems. The final model is able to simulate open‐boundary free surface flow in cases of large deformation and fragmentation of free surface. The models and proposed algorithms have been validated and applied to sample problems. The results confirm the model's efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
917.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
918.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
919.
We have developed a GPU-based molecular dynamics simulation for the study of flows of fluids with anisotropic molecules such as liquid crystals. An application of the simulation to the study of macroscopic flow (backflow) generation by molecular reorientation in a nematic liquid crystal under the application of an electric field is presented. The computations of intermolecular force and torque are parallelized on the GPU using the cell-list method, and an efficient algorithm to update the cell lists was proposed. Some important issues in the implementation of computations that involve a large number of arithmetic operations and data on the GPU that has limited high-speed memory resources are addressed extensively. Despite the relatively low GPU occupancy in the calculation of intermolecular force and torque, the computation on a recent GPU is about 50 times faster than that on a single core of a recent CPU, thus simulations involving a large number of molecules using a personal computer are possible. The GPU-based simulation should allow an extensive investigation of the molecular-level mechanisms underlying various macroscopic flow phenomena in fluids with anisotropic molecules.  相似文献   
920.
We solve numerically the Kirchhoff‐Love dynamic plate equation for an anisotropic heterogeneous material using a spectral method. A mixed velocity‐moment formulation is proposed for the space approximation allowing the use of classical Lagrange finite elements. The benefit of using high order elements is shown through a numerical dispersion analysis. The system resulting from this spatial discretization is solved analytically. Hence this method is particularly efficient for long duration experiments. This time evolution method is compared with explicit and implicit finite differences schemes in terms of accuracy and computation time. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号