首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   507篇
  国内免费   153篇
化学   117篇
晶体学   1篇
力学   9篇
综合类   6篇
数学   23篇
物理学   1562篇
  2024年   7篇
  2023年   17篇
  2022年   57篇
  2021年   66篇
  2020年   47篇
  2019年   39篇
  2018年   46篇
  2017年   29篇
  2016年   55篇
  2015年   30篇
  2014年   106篇
  2013年   97篇
  2012年   106篇
  2011年   123篇
  2010年   130篇
  2009年   122篇
  2008年   155篇
  2007年   111篇
  2006年   98篇
  2005年   72篇
  2004年   48篇
  2003年   48篇
  2002年   25篇
  2001年   16篇
  2000年   18篇
  1999年   10篇
  1998年   4篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有1718条查询结果,搜索用时 484 毫秒
971.
Viscoelastic properties were examined for semidilute solutions of poly(methyl methacrylate) (PMMA) and polystyrene (PS) in chlorinated biphenyl. The number of entanglement per molecule, N, was evaluated from the plateau modulus, G N . Two time constants, s and 1, respectively, characterizing the glass-to-rubber transition and terminal flow regions, were evaluated from the complex modulus and the relaxation modulus. A time constant k supposedly characterizing the shrink of an extended chain, was evaluated from the relaxation modulus at finite strains. The ratios 1/ s and k / s were determined solely by N for each polymer species. The ratio 1/ s was proportional to N 4.5 and N 3.5 for PMMA and PS solutions, respectively. The ratio k / s was approximately proportional to N 2.0 in accord with the prediction of the tube model theory, for either of the polymers. However, the values for PMMA were about four times as large as those for PS. The result is contrary to the expectation from the tube model theory that the viscoelasticity of a polymeric system, with given molecular weight and concentration, is determined if two material constants s and G N are known.  相似文献   
972.
In this work, a coupled system of two V-type atoms with dipole–dipole interaction in a dissipative single-mode cavity, which couples with an external environment, is studied. The analytical solution of this model is obtained by solving the time dependent Schrodinger equation after Hamiltonian of dissipative cavity is diagonalized by introducing a set of new creation and annihilation operators according to Fano theorem. It is also discussed in detail how the entanglement dynamics of different initial states are influenced by the cavity-environment coupling, the spontaneously generated interference (SGI) parameter, and the dipole–dipole interaction between two atoms . The results show that the SGI parameter has different effects on entanglement dynamics under different initial states. Namely, the SGI parameter will increase the decay rate of the initially maximal entangled state and reduce that of the initially partial entangled state. For the initially product state, the larger SGI parameter corresponds to the more entanglement generated. The entanglement monotonically decreases under the weak cavity-environment coupling, while the oscillation of entanglement will occur under the strong cavity-environment coupling. The larger the dipole–dipole interaction is, the slower the entanglement decays and the more the entanglement will be generated. So the dipole–dipole interaction can not only protect and generate entanglement very effectively, but also enhance the regulation effect of the SGI parameter on entanglement.  相似文献   
973.
A complete electro‐nuclear (EN) basis set and quantum electrodynamics bases in photon number scheme combines to form photonic bases sets. The EN q‐states can hence be modulated by appropriate external electromagnetic sources. Quantum determinants for HCN/CNH isomerization within photonic bases are elaborated that rationalize quantum state changes as if it were an apparent unimolecular process. Topologic label of base states permit linking with those obtained with semiclassic schemes. A comparison of results leads to conclude that both schemes can turn out to be complementary. The q‐scheme yielding more detailed information that the semiclassic one as expected. © 2015 Wiley Periodicals, Inc.  相似文献   
974.
We compute the bulk entanglement entropy of a massive scalar field in a Poincare AdS with the Dirichlet and Neumann boundary condition when we trace out a half space. Moreover, by taking into account the quantum back reaction to the minimal surface area, we calculate how much the entanglement entropy changes under a double‐trace deformation of a holographic CFT. In the AdS3/CFT2 setup, our result agrees with the known result in 2d CFTs. In higher dimensions, our results offer holographic predictions.  相似文献   
975.
There are practical motivations to construct genuine tripartite entangled states based on the collective use of two bipartite entangled states. Here, the case that the states are two‐qubit Werner states is considered. The intervals of parameters of two‐qubit Werner states are revealed such that the tripartite state is genuinely entangled. Furthermore, we also investigate the lower bound of genuine multipartite entanglement concurrence for tripartite qudit states. Several examples are given to show the effectiveness of the lower bound.  相似文献   
976.
We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplification (OPA) and subsequent two ring filter cavities (RFCs). The output field of the OPA includes the baseband ω0 and sideband modes ω0±fsubjects to the cavity resonance condition, which are separated by two cascaded RFCs. The first RFC resonates with half the pump wavelength ω0 and the transmitted baseband component is a squeezed state. The reflected fields of the first RFC, including the sideband modes ω0±ωf, are separated by the second RFC, construct Einstein–Podolsky–Rosen entangled state. All freedoms, including the filter cavities for sideband separation and relative phases for the measurements of these sidebands, are actively stabilized. The noise variance of squeezed states is 10.2 dB below the shot noise limit (SNL), the correlation variances of both quadrature amplitude-sum and quadrature phase-difference for the entanglement state are 10.0 dB below the corresponding SNL.  相似文献   
977.
Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics.  相似文献   
978.
Quantum entanglement is not only a fundamental concept in quantum mechanics but also a special resource for many important quantum information processing tasks. An intuitive way to understand quantum entanglement is to analyze its geometric parameters which include local parameters and correlation parameters. The correlation parameters have been extensively studied while the role of local parameters have not been drawn attention. In this paper, we investigate the question how local parameters of a two-qubit system affect quantum entanglement in both quantitative and qualitative perspective. Firstly, we find that the concurrence, a measure of quantum entanglement, of a general two-qubit state is bounded by the norms of local vectors and correlations matrix. Then, we derive a sufficient condition for a two-qubit being separable in perspective of local parameters. Finally, we find that different local parameters could make a state with fixed correlation matrix separable, entangled or even more qualitatively entangled than the one with vanished local parameters.  相似文献   
979.
We investigate the dynamics of entanglement through negativity and witness operators in a system of four non-interacting qubits driven by a classical phase noisy laser characterized by a classical random external field (CREF). The qubits are initially prepared in the GHZ-type and W-type states and interact with the CREF in two different qubit-field configurations, namely, common environment and independent environments in which the cases of equal and different field phase probabilities are distinguished. We find that entanglement exhibits different decaying behavior, depending on the input states of the qubits, the qubit-field coupling configuration, and field phase probabilities. On the one hand, we demonstrate that the coupling of the qubits in a common environment is an alternative and more efficient strategy to completely shield the system from the detrimental impacts of the decoherence process induced by a CREF, independent of the input state and the field phase probabilities considered. Also, we show that GHZ-type states have strong dynamics under CREF as compared to W-type states. On the other hand, we demonstrate that in the model investigated the system robustness's can be greatly improved by increasing the number of qubits constituting the system.  相似文献   
980.
Overshoot of shear stress, σ, and the first normal stress difference, N1, in shear flow was investigated for dilute solutions of polystyrene with very high molecular weight in concentrated solution of low M PS. In the case that the matrix was a nonentangled system, behavior of overshoot was similar to that of dilute solution of high M PS in pure solvent. The magnitudes of shear, γσm and γNm, corresponding to the peaks of σ and N1 lay on the universal functions of γ˙τR, respectively, proposed for dilute solutions in pure solvent. Here τR is the Rouse relaxation time for high M PS in the blend evaluated from dynamic modulus at high frequencies. In the case that the matrix was an entangled system, an additional σ peak was observed at high rates of shear at times corresponding to γσm = 2–3. This peak can be assigned to the motion of low M chains in entanglement network. When the matrix was entangled, stress overshoot was observed even at relatively low rates of shear, say γ˙τR < 10−2. This is probably due to the motion of high M chains in entanglement of all the chains. In this case the γσm and γNm values were higher than those expected for entangled chains of monodisperse polymer in pure solvent. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2043–2050, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号