全文获取类型
收费全文 | 1773篇 |
免费 | 270篇 |
国内免费 | 570篇 |
专业分类
化学 | 2197篇 |
晶体学 | 30篇 |
力学 | 92篇 |
综合类 | 6篇 |
数学 | 3篇 |
物理学 | 285篇 |
出版年
2024年 | 6篇 |
2023年 | 14篇 |
2022年 | 58篇 |
2021年 | 47篇 |
2020年 | 64篇 |
2019年 | 61篇 |
2018年 | 57篇 |
2017年 | 43篇 |
2016年 | 58篇 |
2015年 | 65篇 |
2014年 | 83篇 |
2013年 | 157篇 |
2012年 | 106篇 |
2011年 | 129篇 |
2010年 | 134篇 |
2009年 | 123篇 |
2008年 | 145篇 |
2007年 | 127篇 |
2006年 | 123篇 |
2005年 | 104篇 |
2004年 | 125篇 |
2003年 | 107篇 |
2002年 | 77篇 |
2001年 | 75篇 |
2000年 | 94篇 |
1999年 | 73篇 |
1998年 | 55篇 |
1997年 | 41篇 |
1996年 | 41篇 |
1995年 | 65篇 |
1994年 | 33篇 |
1993年 | 23篇 |
1992年 | 18篇 |
1991年 | 13篇 |
1990年 | 18篇 |
1989年 | 13篇 |
1988年 | 9篇 |
1987年 | 2篇 |
1986年 | 7篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1976年 | 2篇 |
1973年 | 1篇 |
排序方式: 共有2613条查询结果,搜索用时 15 毫秒
51.
52.
Song Yun Weizhong Qian Chaojie Cui Yuntao Yu Chao Zheng Yi Liu Qiang Zhang Fei Wei 《Journal of Energy Chemistry》2013,22(4):567-572
For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1–3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone. 相似文献
53.
The title compound, neogeodin hydrate (C17H14C1208, CAS: 94540-50-8), was derived from marine fungus Aspergilhts terreus CRIM301. It was unequivocally characterized by IR, NMR spectroscopies, and single-crystal X-ray crystallography and tested for various biological activities. Neogeodin hydrate crystallizes in the triclinic space group P1 with a = 8.1159(5) A, b = 8.2472(4) A, c= 14.1278(7) A, a = 81.448(2)°, β = 84.860(2)°, γ= 70.400(2)°, V = 880.13(8) A3; Z = 2. It comprises a diphenyl ether, asterric acid skeleton and dichloro substituents. The methoxyphenoxy rings of the inversely related molecules form a ribbon-like structure that is stabilized by O-H...O hydrogen bonds through the doubly disordered carboxyl groups and by C-H...O interactions, generating the same R22(8) ring motif. The chlorinated methylbenzoate rings, making mostly a right angle, link the parallel upper and lower ribbons via bifurcated O-H...O and C-H...O hydrogen bonds, yielding endless channels. The channels formed are further sustained by C-H...O and π...π interactions Neogeodin hydrate exhibits inhibition against superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, but has no aromatase inhibitory activity. 相似文献
54.
Nickel (Ni)-lignin nanocomposites were synthesized from nickel nitrate and kraft lignin then catalytically graphitized to few-layer graphene-encapsulated nickel nanoparticles (Ni@G). Ni@G nanoparticles were used for catalytic decomposition of methane (CDM) to produce COx-free hydrogen and graphene nanoplatelets. Ni@G showed high catalytic activity for methane decomposition at temperatures of 800 to 900 °C and exhibited long-term stability of 600 min time-on-stream (TOS) without apparent deactivation. The catalytic stability may be attributed to the nickel dispersion in the Ni@G sample. During the CDM reaction process, graphene shells over Ni@G nanoparticles were cracked and peeled off the nickel cores at high temperature. Both the exposed nickel nanoparticles and the cracked graphene shells may participate the CDM reaction, making Ni@G samples highly active for CDM reaction. The vacancy defects and edges in the cracked graphene shells serve as the active sites for methane decomposition. The edges are continuously regenerated by methane molecules through CDM reaction. 相似文献
55.
通过将水合物的分解过程看作是无固态产物层生成的气固反应过程, 结合粒径缩小的收缩核反应模型和分形理论, 建立了多孔介质中水合物降压分解的分数维动力学模型, 提出了基于水合物分解实验数据计算多孔介质分形维数的方法. 分别利用前人的甲烷水合物和CO2水合物降压分解实验数据, 对上述分数维动力学模型进行了验证. 计算结果表明, 用提出的方法所计算得到的多孔介质分形维数与前人的测定结果基本符合; 对甲烷水合物和CO2水合物的降压分解过程, 提出的分数维动力学分解模型得出了和实验结果基本一致的预测, 绝对平均误差(AAD)小于10%. 相似文献
56.
57.
Micropores are the primary sites for methane occurrence in coal. Studying the regularity of methane occurrence in micropores is significant for targeted displacement and other yield-increasing measures in the future. This study used simplified graphene sheets as pore walls to construct coal-structural models with pore sizes of 1 nm, 2 nm, and 4 nm. Based on the Grand Canonical Monte Carlo (GCMC) and molecular dynamics theory, we simulated the adsorption characteristics of methane in pores of different sizes. The results showed that the adsorption capacity was positively correlated with the pore size for pure gas adsorption. The adsorption capacity increased with pressure and pore size for competitive adsorption of binary mixtures in pores. As the average isosteric heat decreased, the interaction between the gas and the pore wall weakened, and the desorption amount of CH4 decreased. In ultramicropores, the high concentration of CO2 (50–70%) is more conducive to CH4 desorption; however, when the CO2 concentration is greater than 70%, the corresponding CH4 adsorption amount is meager, and the selected adsorption coefficient SCO2/CH4 is small. Therefore, to achieve effective desorption of methane in coal micropores, relatively low pressure (4–6 MPa) and a relatively low CO2 concentration (50–70%) should be selected in the process of increasing methane production by CO2 injection in later stages. These research results provide theoretical support for gas injection to promote CH4 desorption in coal pores and to increase yield. 相似文献
58.
With through space and through bond experiments in two-dimensional NMR we analyze the transformation from the thorium phosphate-hydrogen phosphate hydrate (TPHPH) to the β form of the thorium phosphate diphosphate (β-TPD) in relation with the phosphorus networks. These techniques are complementary: the through space coupling gives an insight on the dipolar phosphorus networks while the through bond coupling is particularly efficient in the detection of the P2O7 groups. With these experiments we show that in a first step, by heating the precursor TPHPH above 250 °C, it transforms into an form of TPD. This transformation is due to the complete condensation of hydrogen phosphate groups HPO4 into P2O7 entities. By heating -TPD above 950 °C it transforms into its well-known β form. The form is characterized by a hygroscopic behavior: some water molecules are present near the P2O7 groups that makes non-equivalent their phosphorus nuclei. PO4 dipolar networks are always present in the form. The main effect of these PO4 and P2O7 units is to give the system a channel structure and the water enters in them. 相似文献
59.
Prof. Dr. Shaodong Zhou Dr. Xiaoyan Sun Dr. Lei Yue Dr. Maria Schlangen Prof. Dr. Helmut Schwarz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(12):2967-2971
The thermal gas-phase reactions of [Al2VO5]+ and [AlV2O6]+ with methane have been explored by using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. Both cluster ions chemisorbed methane as the major reaction channels at room temperature. [Al2VO5]+ could break only one C−H bond to liberate CH3, whereas [AlV2O6]+ exhibited higher oxidizing ability such that it brings about the selective generation of formaldehyde. Mechanistic aspects are revealed and the crucial roles of the metal centers are discussed. 相似文献
60.
Dr. Yuan Liu Dr. Jin-Cheng Liu Teng-Hao Li Zeng-Hui Duan Dr. Tian-Yu Zhang Ming Yan Dr. Wan-Lu Li Prof. Dr. Hai Xiao Prof. Dr. Yang-Gang Wang Prof. Dr. Chun-Ran Chang Prof. Dr. Jun Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(42):18745-18749
The direct, nonoxidative conversion of methane on a silica-confined single-atom iron catalyst is a landmark discovery in catalysis, but the proposed gas-phase reaction mechanism is still open to discussion. Here, we report a surface reaction mechanism by computational modeling and simulations. The activation of methane occurs at the single iron site, whereas the dissociated methyl disfavors desorption into gas phase under the reactive conditions. In contrast, the dissociated methyl prefers transferring to adjacent carbon sites of the active center (Fe1©SiC2), followed by C−C coupling and hydrogen transfer to produce the main product (ethylene) via a key −CH−CH2 intermediate. We find a quasi Mars–van Krevelen (quasi-MvK) surface reaction mechanism involving extracting and refilling the surface carbon atoms for the nonoxidative conversion of methane on Fe1©SiO2 and this surface process is identified to be more plausible than the alternative gas-phase reaction mechanism. 相似文献